ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecoptocl Unicode version

Theorem ecoptocl 6224
Description: Implicit substitution of class for equivalence class of ordered pair. (Contributed by NM, 23-Jul-1995.)
Hypotheses
Ref Expression
ecoptocl.1  |-  S  =  ( ( B  X.  C ) /. R
)
ecoptocl.2  |-  ( [
<. x ,  y >. ] R  =  A  ->  ( ph  <->  ps )
)
ecoptocl.3  |-  ( ( x  e.  B  /\  y  e.  C )  ->  ph )
Assertion
Ref Expression
ecoptocl  |-  ( A  e.  S  ->  ps )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    x, R, y    ps, x, y
Allowed substitution hints:    ph( x, y)    S( x, y)

Proof of Theorem ecoptocl
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elqsi 6189 . . 3  |-  ( A  e.  ( ( B  X.  C ) /. R )  ->  E. z  e.  ( B  X.  C
) A  =  [
z ] R )
2 eqid 2056 . . . . 5  |-  ( B  X.  C )  =  ( B  X.  C
)
3 eceq1 6172 . . . . . . 7  |-  ( <.
x ,  y >.  =  z  ->  [ <. x ,  y >. ] R  =  [ z ] R
)
43eqeq2d 2067 . . . . . 6  |-  ( <.
x ,  y >.  =  z  ->  ( A  =  [ <. x ,  y >. ] R  <->  A  =  [ z ] R ) )
54imbi1d 224 . . . . 5  |-  ( <.
x ,  y >.  =  z  ->  ( ( A  =  [ <. x ,  y >. ] R  ->  ps )  <->  ( A  =  [ z ] R  ->  ps ) ) )
6 ecoptocl.3 . . . . . 6  |-  ( ( x  e.  B  /\  y  e.  C )  ->  ph )
7 ecoptocl.2 . . . . . . 7  |-  ( [
<. x ,  y >. ] R  =  A  ->  ( ph  <->  ps )
)
87eqcoms 2059 . . . . . 6  |-  ( A  =  [ <. x ,  y >. ] R  ->  ( ph  <->  ps )
)
96, 8syl5ibcom 148 . . . . 5  |-  ( ( x  e.  B  /\  y  e.  C )  ->  ( A  =  [ <. x ,  y >. ] R  ->  ps )
)
102, 5, 9optocl 4444 . . . 4  |-  ( z  e.  ( B  X.  C )  ->  ( A  =  [ z ] R  ->  ps )
)
1110rexlimiv 2444 . . 3  |-  ( E. z  e.  ( B  X.  C ) A  =  [ z ] R  ->  ps )
121, 11syl 14 . 2  |-  ( A  e.  ( ( B  X.  C ) /. R )  ->  ps )
13 ecoptocl.1 . 2  |-  S  =  ( ( B  X.  C ) /. R
)
1412, 13eleq2s 2148 1  |-  ( A  e.  S  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    = wceq 1259    e. wcel 1409   E.wrex 2324   <.cop 3406    X. cxp 4371   [cec 6135   /.cqs 6136
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-opab 3847  df-xp 4379  df-cnv 4381  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-ec 6139  df-qs 6143
This theorem is referenced by:  2ecoptocl  6225  3ecoptocl  6226  mulidnq  6545  recexnq  6546  ltsonq  6554  distrnq0  6615  addassnq0  6618  ltposr  6906  0idsr  6910  1idsr  6911  00sr  6912  recexgt0sr  6916  archsr  6924  srpospr  6925
  Copyright terms: Public domain W3C validator