ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efrirr Unicode version

Theorem efrirr 4136
Description: Irreflexivity of the epsilon relation: a class founded by epsilon is not a member of itself. (Contributed by NM, 18-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
efrirr  |-  (  _E  Fr  A  ->  -.  A  e.  A )

Proof of Theorem efrirr
StepHypRef Expression
1 frirrg 4133 . . . 4  |-  ( (  _E  Fr  A  /\  A  e.  A  /\  A  e.  A )  ->  -.  A  _E  A
)
213anidm23 1229 . . 3  |-  ( (  _E  Fr  A  /\  A  e.  A )  ->  -.  A  _E  A
)
3 epelg 4073 . . . 4  |-  ( A  e.  A  ->  ( A  _E  A  <->  A  e.  A ) )
43adantl 271 . . 3  |-  ( (  _E  Fr  A  /\  A  e.  A )  ->  ( A  _E  A  <->  A  e.  A ) )
52, 4mtbid 630 . 2  |-  ( (  _E  Fr  A  /\  A  e.  A )  ->  -.  A  e.  A
)
65pm2.01da 598 1  |-  (  _E  Fr  A  ->  -.  A  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1434   class class class wbr 3805    _E cep 4070    Fr wfr 4111
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-v 2612  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-br 3806  df-opab 3860  df-eprel 4072  df-frfor 4114  df-frind 4115
This theorem is referenced by:  tz7.2  4137
  Copyright terms: Public domain W3C validator