Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  el Unicode version

Theorem el 3959
 Description: Every set is an element of some other set. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
el
Distinct variable group:   ,

Proof of Theorem el
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 zfpow 3956 . 2
2 ax-14 1421 . . . . 5
32alrimiv 1770 . . . 4
4 ax-13 1420 . . . 4
53, 4embantd 54 . . 3
65spimv 1708 . 2
71, 6eximii 1509 1
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1257  wex 1397 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-pow 3955 This theorem depends on definitions:  df-bi 114  df-nf 1366 This theorem is referenced by:  dtruarb  3970
 Copyright terms: Public domain W3C validator