![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elab2 | Unicode version |
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elab2.1 |
![]() ![]() ![]() ![]() |
elab2.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
elab2.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
elab2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab2.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | elab2.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | elab2.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | elab2g 2741 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-v 2604 |
This theorem is referenced by: elpw 3396 elint 3650 opabid 4020 elrn2 4604 elimasn 4722 oprabid 5568 tfrlem3a 5959 tfrcllemsucaccv 6003 tfrcllembxssdm 6005 tfrcllemres 6011 addnqprlemrl 6809 addnqprlemru 6810 addnqprlemfl 6811 addnqprlemfu 6812 mulnqprlemrl 6825 mulnqprlemru 6826 mulnqprlemfl 6827 mulnqprlemfu 6828 ltnqpr 6845 ltnqpri 6846 archpr 6895 cauappcvgprlemladdfu 6906 cauappcvgprlemladdfl 6907 caucvgprlemladdfu 6929 caucvgprprlemopu 6951 |
Copyright terms: Public domain | W3C validator |