Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  elabf Unicode version

Theorem elabf 2745
 Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 1-Aug-1994.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
elabf.1
elabf.2
elabf.3
Assertion
Ref Expression
elabf
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem elabf
StepHypRef Expression
1 elabf.2 . 2
2 nfcv 2223 . . 3
3 elabf.1 . . 3
4 elabf.3 . . 3
52, 3, 4elabgf 2744 . 2
61, 5ax-mp 7 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 103   wceq 1285  wnf 1390   wcel 1434  cab 2069  cvv 2610 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2612 This theorem is referenced by:  elab  2746  indpi  6646
 Copyright terms: Public domain W3C validator