Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  elabg2 Unicode version

Theorem elabg2 10311
Description: One implication of elabg 2711. (Contributed by BJ, 21-Nov-2019.)
Hypothesis
Ref Expression
elabg2.1  |-  ( x  =  A  ->  ( ps  ->  ph ) )
Assertion
Ref Expression
elabg2  |-  ( A  e.  V  ->  ( ps  ->  A  e.  {
x  |  ph }
) )
Distinct variable groups:    ps, x    x, A
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem elabg2
StepHypRef Expression
1 nfcv 2194 . 2  |-  F/_ x A
2 nfv 1437 . 2  |-  F/ x ps
3 elabg2.1 . 2  |-  ( x  =  A  ->  ( ps  ->  ph ) )
41, 2, 3elabgf2 10306 1  |-  ( A  e.  V  ->  ( ps  ->  A  e.  {
x  |  ph }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1259    e. wcel 1409   {cab 2042
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator