ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elabgf Unicode version

Theorem elabgf 2737
Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
elabgf.1  |-  F/_ x A
elabgf.2  |-  F/ x ps
elabgf.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
elabgf  |-  ( A  e.  B  ->  ( A  e.  { x  |  ph }  <->  ps )
)

Proof of Theorem elabgf
StepHypRef Expression
1 elabgf.1 . 2  |-  F/_ x A
2 nfab1 2222 . . . 4  |-  F/_ x { x  |  ph }
31, 2nfel 2228 . . 3  |-  F/ x  A  e.  { x  |  ph }
4 elabgf.2 . . 3  |-  F/ x ps
53, 4nfbi 1522 . 2  |-  F/ x
( A  e.  {
x  |  ph }  <->  ps )
6 eleq1 2142 . . 3  |-  ( x  =  A  ->  (
x  e.  { x  |  ph }  <->  A  e.  { x  |  ph }
) )
7 elabgf.3 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
86, 7bibi12d 233 . 2  |-  ( x  =  A  ->  (
( x  e.  {
x  |  ph }  <->  ph )  <->  ( A  e. 
{ x  |  ph } 
<->  ps ) ) )
9 abid 2070 . 2  |-  ( x  e.  { x  | 
ph }  <->  ph )
101, 5, 8, 9vtoclgf 2658 1  |-  ( A  e.  B  ->  ( A  e.  { x  |  ph }  <->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    = wceq 1285   F/wnf 1390    e. wcel 1434   {cab 2068   F/_wnfc 2207
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604
This theorem is referenced by:  elabf  2738  elabg  2740  elab3gf  2744  elrabf  2748  bj-intabssel  10750
  Copyright terms: Public domain W3C validator