ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elabrex Unicode version

Theorem elabrex 5429
Description: Elementhood in an image set. (Contributed by Mario Carneiro, 14-Jan-2014.)
Hypothesis
Ref Expression
elabrex.1  |-  B  e. 
_V
Assertion
Ref Expression
elabrex  |-  ( x  e.  A  ->  B  e.  { y  |  E. x  e.  A  y  =  B } )
Distinct variable groups:    y, B    x, y, A
Allowed substitution hint:    B( x)

Proof of Theorem elabrex
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 tru 1289 . . . 4  |- T.
2 csbeq1a 2917 . . . . . . 7  |-  ( x  =  z  ->  B  =  [_ z  /  x ]_ B )
32equcoms 1635 . . . . . 6  |-  ( z  =  x  ->  B  =  [_ z  /  x ]_ B )
4 a1tru 1301 . . . . . 6  |-  ( z  =  x  -> T.  )
53, 42thd 173 . . . . 5  |-  ( z  =  x  ->  ( B  =  [_ z  /  x ]_ B  <-> T.  )
)
65rspcev 2702 . . . 4  |-  ( ( x  e.  A  /\ T.  )  ->  E. z  e.  A  B  =  [_ z  /  x ]_ B )
71, 6mpan2 416 . . 3  |-  ( x  e.  A  ->  E. z  e.  A  B  =  [_ z  /  x ]_ B )
8 elabrex.1 . . . 4  |-  B  e. 
_V
9 eqeq1 2088 . . . . 5  |-  ( y  =  B  ->  (
y  =  [_ z  /  x ]_ B  <->  B  =  [_ z  /  x ]_ B ) )
109rexbidv 2370 . . . 4  |-  ( y  =  B  ->  ( E. z  e.  A  y  =  [_ z  /  x ]_ B  <->  E. z  e.  A  B  =  [_ z  /  x ]_ B ) )
118, 10elab 2739 . . 3  |-  ( B  e.  { y  |  E. z  e.  A  y  =  [_ z  /  x ]_ B }  <->  E. z  e.  A  B  =  [_ z  /  x ]_ B )
127, 11sylibr 132 . 2  |-  ( x  e.  A  ->  B  e.  { y  |  E. z  e.  A  y  =  [_ z  /  x ]_ B } )
13 nfv 1462 . . . 4  |-  F/ z  y  =  B
14 nfcsb1v 2939 . . . . 5  |-  F/_ x [_ z  /  x ]_ B
1514nfeq2 2231 . . . 4  |-  F/ x  y  =  [_ z  /  x ]_ B
162eqeq2d 2093 . . . 4  |-  ( x  =  z  ->  (
y  =  B  <->  y  =  [_ z  /  x ]_ B ) )
1713, 15, 16cbvrex 2575 . . 3  |-  ( E. x  e.  A  y  =  B  <->  E. z  e.  A  y  =  [_ z  /  x ]_ B )
1817abbii 2195 . 2  |-  { y  |  E. x  e.  A  y  =  B }  =  { y  |  E. z  e.  A  y  =  [_ z  /  x ]_ B }
1912, 18syl6eleqr 2173 1  |-  ( x  e.  A  ->  B  e.  { y  |  E. x  e.  A  y  =  B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1285   T. wtru 1286    e. wcel 1434   {cab 2068   E.wrex 2350   _Vcvv 2602   [_csb 2909
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-rex 2355  df-v 2604  df-sbc 2817  df-csb 2910
This theorem is referenced by:  eusvobj2  5529
  Copyright terms: Public domain W3C validator