ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elcnv2 Unicode version

Theorem elcnv2 4562
Description: Membership in a converse. Equation 5 of [Suppes] p. 62. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
elcnv2  |-  ( A  e.  `' R  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  <. y ,  x >.  e.  R ) )
Distinct variable groups:    x, y, A   
x, R, y

Proof of Theorem elcnv2
StepHypRef Expression
1 elcnv 4561 . 2  |-  ( A  e.  `' R  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  y R x ) )
2 df-br 3807 . . . 4  |-  ( y R x  <->  <. y ,  x >.  e.  R
)
32anbi2i 445 . . 3  |-  ( ( A  =  <. x ,  y >.  /\  y R x )  <->  ( A  =  <. x ,  y
>.  /\  <. y ,  x >.  e.  R ) )
432exbii 1538 . 2  |-  ( E. x E. y ( A  =  <. x ,  y >.  /\  y R x )  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  <. y ,  x >.  e.  R ) )
51, 4bitri 182 1  |-  ( A  e.  `' R  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  <. y ,  x >.  e.  R ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    = wceq 1285   E.wex 1422    e. wcel 1434   <.cop 3420   class class class wbr 3806   `'ccnv 4391
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3917  ax-pow 3969  ax-pr 3993
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2612  df-un 2987  df-in 2989  df-ss 2996  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-br 3807  df-opab 3861  df-cnv 4400
This theorem is referenced by:  cnvuni  4570
  Copyright terms: Public domain W3C validator