Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifi Unicode version

Theorem eldifi 3094
 Description: Implication of membership in a class difference. (Contributed by NM, 29-Apr-1994.)
Assertion
Ref Expression
eldifi

Proof of Theorem eldifi
StepHypRef Expression
1 eldif 2955 . 2
21simplbi 263 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wcel 1409   cdif 2942 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-dif 2948 This theorem is referenced by:  difss  3098  ssddif  3199  noel  3256  phpm  6358  fidifsnen  6362  fzdifsuc  9045  modfzo0difsn  9345
 Copyright terms: Public domain W3C validator