ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldm2g Unicode version

Theorem eldm2g 4559
Description: Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
eldm2g  |-  ( A  e.  V  ->  ( A  e.  dom  B  <->  E. y <. A ,  y >.  e.  B ) )
Distinct variable groups:    y, A    y, B
Allowed substitution hint:    V( y)

Proof of Theorem eldm2g
StepHypRef Expression
1 eldmg 4558 . 2  |-  ( A  e.  V  ->  ( A  e.  dom  B  <->  E. y  A B y ) )
2 df-br 3793 . . 3  |-  ( A B y  <->  <. A , 
y >.  e.  B )
32exbii 1512 . 2  |-  ( E. y  A B y  <->  E. y <. A ,  y
>.  e.  B )
41, 3syl6bb 189 1  |-  ( A  e.  V  ->  ( A  e.  dom  B  <->  E. y <. A ,  y >.  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 102   E.wex 1397    e. wcel 1409   <.cop 3406   class class class wbr 3792   dom cdm 4373
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-un 2950  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-dm 4383
This theorem is referenced by:  eldm2  4561  opeldmg  4568  dmfco  5269  releldm2  5839  tfrlem9  5966  climcau  10097
  Copyright terms: Public domain W3C validator