![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elexd | Unicode version |
Description: If a class is a member of another class, it is a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
elexd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
elexd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elexd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | elex 2619 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-v 2612 |
This theorem is referenced by: tfr1onlemsucfn 6009 tfrcllemsucfn 6022 frecrdg 6077 unsnfidcel 6465 fnfi 6478 hashennn 9856 lcmval 10652 hashdvds 10804 |
Copyright terms: Public domain | W3C validator |