ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz1 Unicode version

Theorem elfz1 8981
Description: Membership in a finite set of sequential integers. (Contributed by NM, 21-Jul-2005.)
Assertion
Ref Expression
elfz1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <-> 
( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N ) ) )

Proof of Theorem elfz1
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 fzval 8978 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  =  { j  e.  ZZ  |  ( M  <_  j  /\  j  <_  N ) } )
21eleq2d 2123 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <-> 
K  e.  { j  e.  ZZ  |  ( M  <_  j  /\  j  <_  N ) } ) )
3 breq2 3796 . . . . 5  |-  ( j  =  K  ->  ( M  <_  j  <->  M  <_  K ) )
4 breq1 3795 . . . . 5  |-  ( j  =  K  ->  (
j  <_  N  <->  K  <_  N ) )
53, 4anbi12d 450 . . . 4  |-  ( j  =  K  ->  (
( M  <_  j  /\  j  <_  N )  <-> 
( M  <_  K  /\  K  <_  N ) ) )
65elrab 2721 . . 3  |-  ( K  e.  { j  e.  ZZ  |  ( M  <_  j  /\  j  <_  N ) }  <->  ( K  e.  ZZ  /\  ( M  <_  K  /\  K  <_  N ) ) )
7 3anass 900 . . 3  |-  ( ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N )  <->  ( K  e.  ZZ  /\  ( M  <_  K  /\  K  <_  N ) ) )
86, 7bitr4i 180 . 2  |-  ( K  e.  { j  e.  ZZ  |  ( M  <_  j  /\  j  <_  N ) }  <->  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N
) )
92, 8syl6bb 189 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <-> 
( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    /\ w3a 896    = wceq 1259    e. wcel 1409   {crab 2327   class class class wbr 3792  (class class class)co 5540    <_ cle 7120   ZZcz 8302   ...cfz 8976
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-setind 4290  ax-cnex 7033  ax-resscn 7034
This theorem depends on definitions:  df-bi 114  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-sbc 2788  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-iota 4895  df-fun 4932  df-fv 4938  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-neg 7248  df-z 8303  df-fz 8977
This theorem is referenced by:  elfz  8982  elfz2  8983  fzen  9009  fzaddel  9024  elfzm11  9055  fznn0  9076
  Copyright terms: Public domain W3C validator