ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz1b Unicode version

Theorem elfz1b 9183
Description: Membership in a 1 based finite set of sequential integers. (Contributed by AV, 30-Oct-2018.)
Assertion
Ref Expression
elfz1b  |-  ( N  e.  ( 1 ... M )  <->  ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M ) )

Proof of Theorem elfz1b
StepHypRef Expression
1 elfz2 9112 . 2  |-  ( N  e.  ( 1 ... M )  <->  ( (
1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
1  <_  N  /\  N  <_  M ) ) )
2 simpl 107 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  1  <_  N )  ->  N  e.  ZZ )
3 0red 7182 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  0  e.  RR )
4 1red 7196 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  1  e.  RR )
5 zre 8436 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  N  e.  RR )
63, 4, 53jca 1119 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  (
0  e.  RR  /\  1  e.  RR  /\  N  e.  RR ) )
76adantr 270 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  1  <_  N )  -> 
( 0  e.  RR  /\  1  e.  RR  /\  N  e.  RR )
)
8 0lt1 7303 . . . . . . . . . . . 12  |-  0  <  1
98a1i 9 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  1  <_  N )  -> 
0  <  1 )
10 simpr 108 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  1  <_  N )  -> 
1  <_  N )
11 ltletr 7267 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  N  e.  RR )  ->  (
( 0  <  1  /\  1  <_  N )  ->  0  <  N
) )
1211imp 122 . . . . . . . . . . 11  |-  ( ( ( 0  e.  RR  /\  1  e.  RR  /\  N  e.  RR )  /\  ( 0  <  1  /\  1  <_  N ) )  ->  0  <  N )
137, 9, 10, 12syl12anc 1168 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  1  <_  N )  -> 
0  <  N )
14 elnnz 8442 . . . . . . . . . 10  |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  0  < 
N ) )
152, 13, 14sylanbrc 408 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  1  <_  N )  ->  N  e.  NN )
1615ex 113 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
1  <_  N  ->  N  e.  NN ) )
17163ad2ant3 962 . . . . . . 7  |-  ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
1  <_  N  ->  N  e.  NN ) )
1817com12 30 . . . . . 6  |-  ( 1  <_  N  ->  (
( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  NN ) )
1918adantr 270 . . . . 5  |-  ( ( 1  <_  N  /\  N  <_  M )  -> 
( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  NN ) )
2019impcom 123 . . . 4  |-  ( ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 1  <_  N  /\  N  <_  M ) )  ->  N  e.  NN )
21 zre 8436 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  1  e.  RR )
22 zre 8436 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  RR )
2321, 5, 223anim123i 1124 . . . . . . . 8  |-  ( ( 1  e.  ZZ  /\  N  e.  ZZ  /\  M  e.  ZZ )  ->  (
1  e.  RR  /\  N  e.  RR  /\  M  e.  RR ) )
24233com23 1145 . . . . . . 7  |-  ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
1  e.  RR  /\  N  e.  RR  /\  M  e.  RR ) )
25 letr 7261 . . . . . . 7  |-  ( ( 1  e.  RR  /\  N  e.  RR  /\  M  e.  RR )  ->  (
( 1  <_  N  /\  N  <_  M )  ->  1  <_  M
) )
2624, 25syl 14 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( 1  <_  N  /\  N  <_  M )  ->  1  <_  M
) )
27 simpl 107 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  1  <_  M )  ->  M  e.  ZZ )
28 0red 7182 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  1  <_  M )  -> 
0  e.  RR )
29 1red 7196 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  1  <_  M )  -> 
1  e.  RR )
3022adantr 270 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  1  <_  M )  ->  M  e.  RR )
318a1i 9 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  1  <_  M )  -> 
0  <  1 )
32 simpr 108 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  1  <_  M )  -> 
1  <_  M )
3328, 29, 30, 31, 32ltletrd 7594 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  1  <_  M )  -> 
0  <  M )
34 elnnz 8442 . . . . . . . . 9  |-  ( M  e.  NN  <->  ( M  e.  ZZ  /\  0  < 
M ) )
3527, 33, 34sylanbrc 408 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  1  <_  M )  ->  M  e.  NN )
3635ex 113 . . . . . . 7  |-  ( M  e.  ZZ  ->  (
1  <_  M  ->  M  e.  NN ) )
37363ad2ant2 961 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
1  <_  M  ->  M  e.  NN ) )
3826, 37syld 44 . . . . 5  |-  ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( 1  <_  N  /\  N  <_  M )  ->  M  e.  NN ) )
3938imp 122 . . . 4  |-  ( ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 1  <_  N  /\  N  <_  M ) )  ->  M  e.  NN )
40 simprr 499 . . . 4  |-  ( ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 1  <_  N  /\  N  <_  M ) )  ->  N  <_  M )
4120, 39, 403jca 1119 . . 3  |-  ( ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 1  <_  N  /\  N  <_  M ) )  ->  ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M ) )
42 1zzd 8459 . . . . 5  |-  ( ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M )  ->  1  e.  ZZ )
43 nnz 8451 . . . . . 6  |-  ( M  e.  NN  ->  M  e.  ZZ )
44433ad2ant2 961 . . . . 5  |-  ( ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M )  ->  M  e.  ZZ )
45 nnz 8451 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ZZ )
46453ad2ant1 960 . . . . 5  |-  ( ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M )  ->  N  e.  ZZ )
4742, 44, 463jca 1119 . . . 4  |-  ( ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M )  ->  (
1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )
48 nnge1 8129 . . . . 5  |-  ( N  e.  NN  ->  1  <_  N )
49483ad2ant1 960 . . . 4  |-  ( ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M )  ->  1  <_  N )
50 simp3 941 . . . 4  |-  ( ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M )  ->  N  <_  M )
5147, 49, 50jca32 303 . . 3  |-  ( ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M )  ->  (
( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 1  <_  N  /\  N  <_  M ) ) )
5241, 51impbii 124 . 2  |-  ( ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 1  <_  N  /\  N  <_  M ) )  <->  ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M ) )
531, 52bitri 182 1  |-  ( N  e.  ( 1 ... M )  <->  ( N  e.  NN  /\  M  e.  NN  /\  N  <_  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 920    e. wcel 1434   class class class wbr 3793  (class class class)co 5543   RRcr 7042   0cc0 7043   1c1 7044    < clt 7215    <_ cle 7216   NNcn 8106   ZZcz 8432   ...cfz 9105
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-addcom 7138  ax-addass 7140  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-0id 7146  ax-rnegex 7147  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-ltadd 7154
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-br 3794  df-opab 3848  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-iota 4897  df-fun 4934  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-inn 8107  df-z 8433  df-fz 9106
This theorem is referenced by:  ubmelfzo  9286
  Copyright terms: Public domain W3C validator