ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzelz Unicode version

Theorem elfzelz 9121
Description: A member of a finite set of sequential integer is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzelz  |-  ( K  e.  ( M ... N )  ->  K  e.  ZZ )

Proof of Theorem elfzelz
StepHypRef Expression
1 elfzuz 9117 . 2  |-  ( K  e.  ( M ... N )  ->  K  e.  ( ZZ>= `  M )
)
2 eluzelz 8709 . 2  |-  ( K  e.  ( ZZ>= `  M
)  ->  K  e.  ZZ )
31, 2syl 14 1  |-  ( K  e.  ( M ... N )  ->  K  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1434   ` cfv 4932  (class class class)co 5543   ZZcz 8432   ZZ>=cuz 8700   ...cfz 9105
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-setind 4288  ax-cnex 7129  ax-resscn 7130
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-mpt 3849  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-fv 4940  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-neg 7349  df-z 8433  df-uz 8701  df-fz 9106
This theorem is referenced by:  elfz1eq  9130  fzsplit2  9145  fzdisj  9147  elfznn  9149  fznatpl1  9169  fzdifsuc  9174  fzrev2i  9179  fzrev3i  9181  elfzp12  9192  fznuz  9195  fzrevral  9198  fzshftral  9201  fznn0sub2  9216  elfzmlbm  9219  difelfznle  9223  fzosplit  9263  isermono  9553  bcval2  9774  bcval4  9776  bccmpl  9778  bcp1nk  9786  bcpasc  9790  bccl2  9792  isumrblem  10337  fzm1ndvds  10401  lcmval  10589  lcmcllem  10593  lcmledvds  10596  prmdvdsfz  10664
  Copyright terms: Public domain W3C validator