ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elicc2 Unicode version

Theorem elicc2 9714
Description: Membership in a closed real interval. (Contributed by Paul Chapman, 21-Sep-2007.) (Revised by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
elicc2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,] B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <_  B ) ) )

Proof of Theorem elicc2
StepHypRef Expression
1 rexr 7804 . . 3  |-  ( A  e.  RR  ->  A  e.  RR* )
2 rexr 7804 . . 3  |-  ( B  e.  RR  ->  B  e.  RR* )
3 elicc1 9700 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,] B )  <->  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B
) ) )
41, 2, 3syl2an 287 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,] B )  <-> 
( C  e.  RR*  /\  A  <_  C  /\  C  <_  B ) ) )
5 mnfxr 7815 . . . . . . . 8  |- -oo  e.  RR*
65a1i 9 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  -> -oo  e.  RR* )
71ad2antrr 479 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  A  e.  RR* )
8 simpr1 987 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  C  e.  RR* )
9 mnflt 9562 . . . . . . . 8  |-  ( A  e.  RR  -> -oo  <  A )
109ad2antrr 479 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  -> -oo  <  A )
11 simpr2 988 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  A  <_  C )
126, 7, 8, 10, 11xrltletrd 9587 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  -> -oo  <  C )
132ad2antlr 480 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  B  e.  RR* )
14 pnfxr 7811 . . . . . . . 8  |- +oo  e.  RR*
1514a1i 9 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  -> +oo  e.  RR* )
16 simpr3 989 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  C  <_  B )
17 ltpnf 9560 . . . . . . . 8  |-  ( B  e.  RR  ->  B  < +oo )
1817ad2antlr 480 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  B  < +oo )
198, 13, 15, 16, 18xrlelttrd 9586 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  C  < +oo )
20 xrrebnd 9595 . . . . . . 7  |-  ( C  e.  RR*  ->  ( C  e.  RR  <->  ( -oo  <  C  /\  C  < +oo ) ) )
218, 20syl 14 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  ( C  e.  RR  <->  ( -oo  <  C  /\  C  < +oo ) ) )
2212, 19, 21mpbir2and 928 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  C  e.  RR )
2322, 11, 163jca 1161 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
) )  ->  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B ) )
2423ex 114 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
)  ->  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B
) ) )
25 rexr 7804 . . . 4  |-  ( C  e.  RR  ->  C  e.  RR* )
26253anim1i 1167 . . 3  |-  ( ( C  e.  RR  /\  A  <_  C  /\  C  <_  B )  ->  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B ) )
2724, 26impbid1 141 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( C  e. 
RR*  /\  A  <_  C  /\  C  <_  B
)  <->  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B
) ) )
284, 27bitrd 187 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,] B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <_  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    e. wcel 1480   class class class wbr 3924  (class class class)co 5767   RRcr 7612   +oocpnf 7790   -oocmnf 7791   RR*cxr 7792    < clt 7793    <_ cle 7794   [,]cicc 9667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-icc 9671
This theorem is referenced by:  elicc2i  9715  iccssre  9731  iccsupr  9742  iccneg  9765  iccshftr  9770  iccshftl  9772  iccdil  9774  icccntr  9776  iccf1o  9780  suplociccreex  12760  suplociccex  12761  ivthinclemlopn  12772  ivthinclemuopn  12774
  Copyright terms: Public domain W3C validator