ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elirrv Unicode version

Theorem elirrv 4299
Description: The membership relation is irreflexive: no set is a member of itself. Theorem 105 of [Suppes] p. 54. (Contributed by NM, 19-Aug-1993.)
Assertion
Ref Expression
elirrv  |-  -.  x  e.  x

Proof of Theorem elirrv
StepHypRef Expression
1 elirr 4292 1  |-  -.  x  e.  x
Colors of variables: wff set class
Syntax hints:   -. wn 3
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-setind 4288
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-v 2604  df-dif 2976  df-sn 3412
This theorem is referenced by:  ruv  4301  dtruex  4310  tfrlemisucfn  5973  tfrlemisucaccv  5974  ltsopi  6572
  Copyright terms: Public domain W3C validator