ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eliunxp Unicode version

Theorem eliunxp 4503
Description: Membership in a union of cross products. Analogue of elxp 4388 for nonconstant  B ( x ). (Contributed by Mario Carneiro, 29-Dec-2014.)
Assertion
Ref Expression
eliunxp  |-  ( C  e.  U_ x  e.  A  ( { x }  X.  B )  <->  E. x E. y ( C  = 
<. x ,  y >.  /\  ( x  e.  A  /\  y  e.  B
) ) )
Distinct variable groups:    y, A    y, B    x, y, C
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem eliunxp
StepHypRef Expression
1 relxp 4475 . . . . . 6  |-  Rel  ( { x }  X.  B )
21rgenw 2419 . . . . 5  |-  A. x  e.  A  Rel  ( { x }  X.  B
)
3 reliun 4486 . . . . 5  |-  ( Rel  U_ x  e.  A  ( { x }  X.  B )  <->  A. x  e.  A  Rel  ( { x }  X.  B
) )
42, 3mpbir 144 . . . 4  |-  Rel  U_ x  e.  A  ( {
x }  X.  B
)
5 elrel 4468 . . . 4  |-  ( ( Rel  U_ x  e.  A  ( { x }  X.  B )  /\  C  e.  U_ x  e.  A  ( { x }  X.  B ) )  ->  E. x E. y  C  =  <. x ,  y
>. )
64, 5mpan 415 . . 3  |-  ( C  e.  U_ x  e.  A  ( { x }  X.  B )  ->  E. x E. y  C  =  <. x ,  y
>. )
76pm4.71ri 384 . 2  |-  ( C  e.  U_ x  e.  A  ( { x }  X.  B )  <->  ( E. x E. y  C  = 
<. x ,  y >.  /\  C  e.  U_ x  e.  A  ( {
x }  X.  B
) ) )
8 nfiu1 3716 . . . 4  |-  F/_ x U_ x  e.  A  ( { x }  X.  B )
98nfel2 2232 . . 3  |-  F/ x  C  e.  U_ x  e.  A  ( { x }  X.  B )
10919.41 1617 . 2  |-  ( E. x ( E. y  C  =  <. x ,  y >.  /\  C  e. 
U_ x  e.  A  ( { x }  X.  B ) )  <->  ( E. x E. y  C  = 
<. x ,  y >.  /\  C  e.  U_ x  e.  A  ( {
x }  X.  B
) ) )
11 19.41v 1824 . . . 4  |-  ( E. y ( C  = 
<. x ,  y >.  /\  C  e.  U_ x  e.  A  ( {
x }  X.  B
) )  <->  ( E. y  C  =  <. x ,  y >.  /\  C  e.  U_ x  e.  A  ( { x }  X.  B ) ) )
12 eleq1 2142 . . . . . . 7  |-  ( C  =  <. x ,  y
>.  ->  ( C  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  <. x ,  y >.  e.  U_ x  e.  A  ( {
x }  X.  B
) ) )
13 opeliunxp 4421 . . . . . . 7  |-  ( <.
x ,  y >.  e.  U_ x  e.  A  ( { x }  X.  B )  <->  ( x  e.  A  /\  y  e.  B ) )
1412, 13syl6bb 194 . . . . . 6  |-  ( C  =  <. x ,  y
>.  ->  ( C  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  ( x  e.  A  /\  y  e.  B ) ) )
1514pm5.32i 442 . . . . 5  |-  ( ( C  =  <. x ,  y >.  /\  C  e.  U_ x  e.  A  ( { x }  X.  B ) )  <->  ( C  =  <. x ,  y
>.  /\  ( x  e.  A  /\  y  e.  B ) ) )
1615exbii 1537 . . . 4  |-  ( E. y ( C  = 
<. x ,  y >.  /\  C  e.  U_ x  e.  A  ( {
x }  X.  B
) )  <->  E. y
( C  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
) )
1711, 16bitr3i 184 . . 3  |-  ( ( E. y  C  = 
<. x ,  y >.  /\  C  e.  U_ x  e.  A  ( {
x }  X.  B
) )  <->  E. y
( C  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  B )
) )
1817exbii 1537 . 2  |-  ( E. x ( E. y  C  =  <. x ,  y >.  /\  C  e. 
U_ x  e.  A  ( { x }  X.  B ) )  <->  E. x E. y ( C  = 
<. x ,  y >.  /\  ( x  e.  A  /\  y  e.  B
) ) )
197, 10, 183bitr2i 206 1  |-  ( C  e.  U_ x  e.  A  ( { x }  X.  B )  <->  E. x E. y ( C  = 
<. x ,  y >.  /\  ( x  e.  A  /\  y  e.  B
) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    = wceq 1285   E.wex 1422    e. wcel 1434   A.wral 2349   {csn 3406   <.cop 3409   U_ciun 3686    X. cxp 4369   Rel wrel 4376
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-sbc 2817  df-csb 2910  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-iun 3688  df-opab 3848  df-xp 4377  df-rel 4378
This theorem is referenced by:  raliunxp  4505  rexiunxp  4506  dfmpt3  5052  mpt2mptx  5626
  Copyright terms: Public domain W3C validator