ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnn0nn Unicode version

Theorem elnn0nn 8281
Description: The nonnegative integer property expressed in terms of positive integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
elnn0nn  |-  ( N  e.  NN0  <->  ( N  e.  CC  /\  ( N  +  1 )  e.  NN ) )

Proof of Theorem elnn0nn
StepHypRef Expression
1 nn0cn 8249 . . 3  |-  ( N  e.  NN0  ->  N  e.  CC )
2 nn0p1nn 8278 . . 3  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
31, 2jca 294 . 2  |-  ( N  e.  NN0  ->  ( N  e.  CC  /\  ( N  +  1 )  e.  NN ) )
4 simpl 106 . . . 4  |-  ( ( N  e.  CC  /\  ( N  +  1
)  e.  NN )  ->  N  e.  CC )
5 ax-1cn 7035 . . . 4  |-  1  e.  CC
6 pncan 7280 . . . 4  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
74, 5, 6sylancl 398 . . 3  |-  ( ( N  e.  CC  /\  ( N  +  1
)  e.  NN )  ->  ( ( N  +  1 )  - 
1 )  =  N )
8 nnm1nn0 8280 . . . 4  |-  ( ( N  +  1 )  e.  NN  ->  (
( N  +  1 )  -  1 )  e.  NN0 )
98adantl 266 . . 3  |-  ( ( N  e.  CC  /\  ( N  +  1
)  e.  NN )  ->  ( ( N  +  1 )  - 
1 )  e.  NN0 )
107, 9eqeltrrd 2131 . 2  |-  ( ( N  e.  CC  /\  ( N  +  1
)  e.  NN )  ->  N  e.  NN0 )
113, 10impbii 121 1  |-  ( N  e.  NN0  <->  ( N  e.  CC  /\  ( N  +  1 )  e.  NN ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 101    <-> wb 102    = wceq 1259    e. wcel 1409  (class class class)co 5540   CCcc 6945   1c1 6948    + caddc 6950    - cmin 7245   NNcn 7990   NN0cn0 8239
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-setind 4290  ax-cnex 7033  ax-resscn 7034  ax-1cn 7035  ax-1re 7036  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-addcom 7042  ax-addass 7044  ax-distr 7046  ax-i2m1 7047  ax-0id 7050  ax-rnegex 7051  ax-cnre 7053
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-br 3793  df-opab 3847  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-iota 4895  df-fun 4932  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-sub 7247  df-inn 7991  df-n0 8240
This theorem is referenced by:  elnnnn0  8282  peano2z  8338
  Copyright terms: Public domain W3C validator