ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elong Unicode version

Theorem elong 4138
Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.)
Assertion
Ref Expression
elong  |-  ( A  e.  V  ->  ( A  e.  On  <->  Ord  A ) )

Proof of Theorem elong
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ordeq 4137 . 2  |-  ( x  =  A  ->  ( Ord  x  <->  Ord  A ) )
2 df-on 4133 . 2  |-  On  =  { x  |  Ord  x }
31, 2elab2g 2712 1  |-  ( A  e.  V  ->  ( A  e.  On  <->  Ord  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 102    e. wcel 1409   Ord word 4127   Oncon0 4128
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-in 2952  df-ss 2959  df-uni 3609  df-tr 3883  df-iord 4131  df-on 4133
This theorem is referenced by:  elon  4139  eloni  4140  elon2  4141  ordelon  4148  onin  4151  limelon  4164  ssonuni  4242  suceloni  4255  sucelon  4257  onintonm  4271  onprc  4304  omelon2  4358  bj-nnelon  10471
  Copyright terms: Public domain W3C validator