Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eloprabg Unicode version

Theorem eloprabg 5623
 Description: The law of concretion for operation class abstraction. Compare elopab 4021. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
eloprabg.1
eloprabg.2
eloprabg.3
Assertion
Ref Expression
eloprabg
Distinct variable groups:   ,,,   ,,,   ,,,   ,,,
Allowed substitution hints:   (,,)   (,,)   (,,)   (,,)   (,,)   (,,)

Proof of Theorem eloprabg
StepHypRef Expression
1 eloprabg.1 . . 3
2 eloprabg.2 . . 3
3 eloprabg.3 . . 3
41, 2, 3syl3an9b 1242 . 2
54eloprabga 5622 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 103   w3a 920   wceq 1285   wcel 1434  cop 3409  coprab 5544 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-oprab 5547 This theorem is referenced by:  ov  5651  ovg  5670
 Copyright terms: Public domain W3C validator