![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elpwg | Unicode version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 6-Aug-2000.) |
Ref | Expression |
---|---|
elpwg |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2142 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sseq1 3021 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | vex 2605 |
. . 3
![]() ![]() ![]() ![]() | |
4 | 3 | elpw 3396 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 2, 4 | vtoclbg 2660 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-v 2604 df-in 2980 df-ss 2987 df-pw 3392 |
This theorem is referenced by: elpwi 3399 pwidg 3403 prsspwg 3552 elpw2g 3939 snelpwi 3975 prelpwi 3977 pwel 3981 eldifpw 4234 f1opw2 5737 2pwuninelg 5932 tfrlemibfn 5977 tfr1onlembfn 5993 tfrcllembfn 6006 fopwdom 6380 |
Copyright terms: Public domain | W3C validator |