ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elqsg Unicode version

Theorem elqsg 6479
Description: Closed form of elqs 6480. (Contributed by Rodolfo Medina, 12-Oct-2010.)
Assertion
Ref Expression
elqsg  |-  ( B  e.  V  ->  ( B  e.  ( A /. R )  <->  E. x  e.  A  B  =  [ x ] R
) )
Distinct variable groups:    x, A    x, B    x, R
Allowed substitution hint:    V( x)

Proof of Theorem elqsg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2146 . . 3  |-  ( y  =  B  ->  (
y  =  [ x ] R  <->  B  =  [
x ] R ) )
21rexbidv 2438 . 2  |-  ( y  =  B  ->  ( E. x  e.  A  y  =  [ x ] R  <->  E. x  e.  A  B  =  [ x ] R ) )
3 df-qs 6435 . 2  |-  ( A /. R )  =  { y  |  E. x  e.  A  y  =  [ x ] R }
42, 3elab2g 2831 1  |-  ( B  e.  V  ->  ( B  e.  ( A /. R )  <->  E. x  e.  A  B  =  [ x ] R
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1331    e. wcel 1480   E.wrex 2417   [cec 6427   /.cqs 6428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-rex 2422  df-v 2688  df-qs 6435
This theorem is referenced by:  elqs  6480  elqsi  6481  ecelqsg  6482
  Copyright terms: Public domain W3C validator