ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elqsi Unicode version

Theorem elqsi 6224
Description: Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
elqsi  |-  ( B  e.  ( A /. R )  ->  E. x  e.  A  B  =  [ x ] R
)
Distinct variable groups:    x, A    x, B    x, R

Proof of Theorem elqsi
StepHypRef Expression
1 elqsg 6222 . 2  |-  ( B  e.  ( A /. R )  ->  ( B  e.  ( A /. R )  <->  E. x  e.  A  B  =  [ x ] R
) )
21ibi 174 1  |-  ( B  e.  ( A /. R )  ->  E. x  e.  A  B  =  [ x ] R
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1285    e. wcel 1434   E.wrex 2350   [cec 6170   /.cqs 6171
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-rex 2355  df-v 2604  df-qs 6178
This theorem is referenced by:  ectocld  6238  ecoptocl  6259  eroveu  6263  dmaddpqlem  6629  nqpi  6630  nq0nn  6694
  Copyright terms: Public domain W3C validator