ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrege0 Unicode version

Theorem elrege0 9127
Description: The predicate "is a nonnegative real". (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
elrege0  |-  ( A  e.  ( 0 [,) +oo )  <->  ( A  e.  RR  /\  0  <_  A ) )

Proof of Theorem elrege0
StepHypRef Expression
1 0re 7233 . 2  |-  0  e.  RR
2 elicopnf 9120 . 2  |-  ( 0  e.  RR  ->  ( A  e.  ( 0 [,) +oo )  <->  ( A  e.  RR  /\  0  <_  A ) ) )
31, 2ax-mp 7 1  |-  ( A  e.  ( 0 [,) +oo )  <->  ( A  e.  RR  /\  0  <_  A ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    e. wcel 1434   class class class wbr 3805  (class class class)co 5563   RRcr 7094   0cc0 7095   +oocpnf 7264    <_ cle 7268   [,)cico 9041
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7181  ax-resscn 7182  ax-1re 7184  ax-addrcl 7187  ax-rnegex 7199  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2612  df-sbc 2825  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-br 3806  df-opab 3860  df-id 4076  df-po 4079  df-iso 4080  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-iota 4917  df-fun 4954  df-fv 4960  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-ico 9045
This theorem is referenced by:  rge0ssre  9128  0e0icopnf  9130  ge0addcl  9132  ge0mulcl  9133
  Copyright terms: Public domain W3C validator