ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsnres Unicode version

Theorem elsnres 4856
Description: Memebership in restriction to a singleton. (Contributed by Scott Fenton, 17-Mar-2011.)
Hypothesis
Ref Expression
elsnres.1  |-  C  e. 
_V
Assertion
Ref Expression
elsnres  |-  ( A  e.  ( B  |`  { C } )  <->  E. y
( A  =  <. C ,  y >.  /\  <. C ,  y >.  e.  B
) )
Distinct variable groups:    y, A    y, B    y, C

Proof of Theorem elsnres
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elres 4855 . 2  |-  ( A  e.  ( B  |`  { C } )  <->  E. x  e.  { C } E. y ( A  = 
<. x ,  y >.  /\  <. x ,  y
>.  e.  B ) )
2 rexcom4 2709 . 2  |-  ( E. x  e.  { C } E. y ( A  =  <. x ,  y
>.  /\  <. x ,  y
>.  e.  B )  <->  E. y E. x  e.  { C }  ( A  = 
<. x ,  y >.  /\  <. x ,  y
>.  e.  B ) )
3 elsnres.1 . . . 4  |-  C  e. 
_V
4 opeq1 3705 . . . . . 6  |-  ( x  =  C  ->  <. x ,  y >.  =  <. C ,  y >. )
54eqeq2d 2151 . . . . 5  |-  ( x  =  C  ->  ( A  =  <. x ,  y >.  <->  A  =  <. C ,  y >. )
)
64eleq1d 2208 . . . . 5  |-  ( x  =  C  ->  ( <. x ,  y >.  e.  B  <->  <. C ,  y
>.  e.  B ) )
75, 6anbi12d 464 . . . 4  |-  ( x  =  C  ->  (
( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
)  <->  ( A  = 
<. C ,  y >.  /\  <. C ,  y
>.  e.  B ) ) )
83, 7rexsn 3568 . . 3  |-  ( E. x  e.  { C }  ( A  = 
<. x ,  y >.  /\  <. x ,  y
>.  e.  B )  <->  ( A  =  <. C ,  y
>.  /\  <. C ,  y
>.  e.  B ) )
98exbii 1584 . 2  |-  ( E. y E. x  e. 
{ C }  ( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
)  <->  E. y ( A  =  <. C ,  y
>.  /\  <. C ,  y
>.  e.  B ) )
101, 2, 93bitri 205 1  |-  ( A  e.  ( B  |`  { C } )  <->  E. y
( A  =  <. C ,  y >.  /\  <. C ,  y >.  e.  B
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1331   E.wex 1468    e. wcel 1480   E.wrex 2417   _Vcvv 2686   {csn 3527   <.cop 3530    |` cres 4541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-opab 3990  df-xp 4545  df-rel 4546  df-res 4551
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator