Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluniab Unicode version

Theorem eluniab 3633
 Description: Membership in union of a class abstraction. (Contributed by NM, 11-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
eluniab
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem eluniab
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eluni 3624 . 2
2 nfv 1462 . . . 4
3 nfsab1 2073 . . . 4
42, 3nfan 1498 . . 3
5 nfv 1462 . . 3
6 eleq2 2146 . . . 4
7 eleq1 2145 . . . . 5
8 abid 2071 . . . . 5
97, 8syl6bb 194 . . . 4
106, 9anbi12d 457 . . 3
114, 5, 10cbvex 1681 . 2
121, 11bitri 182 1
 Colors of variables: wff set class Syntax hints:   wa 102   wb 103  wex 1422   wcel 1434  cab 2069  cuni 3621 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2612  df-uni 3622 This theorem is referenced by:  elunirab  3634  dfiun2g  3730  inuni  3950  snnex  4227  elfv  5228  unielxp  5852  tfrlem9  5989  tfr0dm  5992
 Copyright terms: Public domain W3C validator