ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluz1 Unicode version

Theorem eluz1 8774
Description: Membership in the upper set of integers starting at  M. (Contributed by NM, 5-Sep-2005.)
Assertion
Ref Expression
eluz1  |-  ( M  e.  ZZ  ->  ( N  e.  ( ZZ>= `  M )  <->  ( N  e.  ZZ  /\  M  <_  N ) ) )

Proof of Theorem eluz1
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 uzval 8772 . . 3  |-  ( M  e.  ZZ  ->  ( ZZ>=
`  M )  =  { k  e.  ZZ  |  M  <_  k } )
21eleq2d 2152 . 2  |-  ( M  e.  ZZ  ->  ( N  e.  ( ZZ>= `  M )  <->  N  e.  { k  e.  ZZ  |  M  <_  k } ) )
3 breq2 3809 . . 3  |-  ( k  =  N  ->  ( M  <_  k  <->  M  <_  N ) )
43elrab 2757 . 2  |-  ( N  e.  { k  e.  ZZ  |  M  <_ 
k }  <->  ( N  e.  ZZ  /\  M  <_  N ) )
52, 4syl6bb 194 1  |-  ( M  e.  ZZ  ->  ( N  e.  ( ZZ>= `  M )  <->  ( N  e.  ZZ  /\  M  <_  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1434   {crab 2357   class class class wbr 3805   ` cfv 4952    <_ cle 7286   ZZcz 8502   ZZ>=cuz 8770
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-cnex 7199  ax-resscn 7200
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2612  df-sbc 2825  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-br 3806  df-opab 3860  df-mpt 3861  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-iota 4917  df-fun 4954  df-fv 4960  df-ov 5567  df-neg 7419  df-z 8503  df-uz 8771
This theorem is referenced by:  eluz2  8776  eluz1i  8777  eluz  8783  uzid  8784  uzss  8790  eluzp1m1  8793  eluzadd  8798  eluzsub  8799  raluz  8817  rexuz  8819  caucvgrelemcau  10085  caucvgre  10086  ialgcvga  10658
  Copyright terms: Public domain W3C validator