![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eluzelz | Unicode version |
Description: A member of an upper set of integers is an integer. (Contributed by NM, 6-Sep-2005.) |
Ref | Expression |
---|---|
eluzelz |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2 8695 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simp2bi 955 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3898 ax-pow 3950 ax-pr 3966 ax-cnex 7118 ax-resscn 7119 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-rab 2358 df-v 2604 df-sbc 2817 df-un 2978 df-in 2980 df-ss 2987 df-pw 3386 df-sn 3406 df-pr 3407 df-op 3409 df-uni 3604 df-br 3788 df-opab 3842 df-mpt 3843 df-id 4050 df-xp 4371 df-rel 4372 df-cnv 4373 df-co 4374 df-dm 4375 df-rn 4376 df-res 4377 df-ima 4378 df-iota 4891 df-fun 4928 df-fn 4929 df-f 4930 df-fv 4934 df-ov 5540 df-neg 7338 df-z 8422 df-uz 8690 |
This theorem is referenced by: eluzelre 8699 uztrn 8705 uzneg 8707 uzssz 8708 uzss 8709 eluzp1l 8713 eluzaddi 8715 eluzsubi 8716 eluzadd 8717 eluzsub 8718 uzm1 8719 uzin 8721 uzind4 8746 uz2mulcl 8765 elfz5 9102 elfzel2 9108 elfzelz 9110 eluzfz2 9116 peano2fzr 9121 fzsplit2 9134 fzopth 9144 fzsuc 9151 elfzp1 9154 fzdifsuc 9163 uzsplit 9174 uzdisj 9175 fzm1 9182 fzneuz 9183 uznfz 9185 nn0disj 9214 elfzo3 9238 fzoss2 9247 fzouzsplit 9254 eluzgtdifelfzo 9272 fzosplitsnm1 9284 fzofzp1b 9303 elfzonelfzo 9305 fzosplitsn 9308 fzisfzounsn 9311 mulp1mod1 9436 m1modge3gt1 9442 frec2uzltd 9474 frecfzen2 9498 uzsinds 9507 iseqfveq2 9533 iseqfeq2 9534 iseqshft2 9537 monoord 9540 monoord2 9541 isermono 9542 iseqsplit 9543 iseqid 9552 iseqz 9555 leexp2a 9615 expnlbnd2 9684 rexuz3 10003 r19.2uz 10006 cau4 10129 caubnd2 10130 clim 10247 climshft2 10272 climaddc1 10294 climmulc2 10296 climsubc1 10297 climsubc2 10298 clim2iser 10302 clim2iser2 10303 iiserex 10304 climlec2 10306 climub 10309 climcau 10311 climcaucn 10315 serif0 10316 isumrblem 10326 fisumcvg 10327 zsupcllemstep 10474 infssuzex 10478 dvdsbnd 10481 ncoprmgcdne1b 10604 isprm3 10633 prmind2 10635 nprm 10638 dvdsprm 10651 exprmfct 10652 |
Copyright terms: Public domain | W3C validator |