ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elvvuni Unicode version

Theorem elvvuni 4424
Description: An ordered pair contains its union. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
elvvuni  |-  ( A  e.  ( _V  X.  _V )  ->  U. A  e.  A )

Proof of Theorem elvvuni
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 4422 . 2  |-  ( A  e.  ( _V  X.  _V )  <->  E. x E. y  A  =  <. x ,  y >. )
2 vex 2605 . . . . . 6  |-  x  e. 
_V
3 vex 2605 . . . . . 6  |-  y  e. 
_V
42, 3uniop 4012 . . . . 5  |-  U. <. x ,  y >.  =  {
x ,  y }
52, 3opi2 3990 . . . . 5  |-  { x ,  y }  e.  <.
x ,  y >.
64, 5eqeltri 2152 . . . 4  |-  U. <. x ,  y >.  e.  <. x ,  y >.
7 unieq 3612 . . . . 5  |-  ( A  =  <. x ,  y
>.  ->  U. A  =  U. <. x ,  y >.
)
8 id 19 . . . . 5  |-  ( A  =  <. x ,  y
>.  ->  A  =  <. x ,  y >. )
97, 8eleq12d 2150 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  ( U. A  e.  A  <->  U. <. x ,  y
>.  e.  <. x ,  y
>. ) )
106, 9mpbiri 166 . . 3  |-  ( A  =  <. x ,  y
>.  ->  U. A  e.  A
)
1110exlimivv 1818 . 2  |-  ( E. x E. y  A  =  <. x ,  y
>.  ->  U. A  e.  A
)
121, 11sylbi 119 1  |-  ( A  e.  ( _V  X.  _V )  ->  U. A  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1285   E.wex 1422    e. wcel 1434   _Vcvv 2602   {cpr 3401   <.cop 3403   U.cuni 3603    X. cxp 4363
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-pow 3950  ax-pr 3966
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-opab 3842  df-xp 4371
This theorem is referenced by:  unielxp  5825
  Copyright terms: Public domain W3C validator