ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elvvv Unicode version

Theorem elvvv 4602
Description: Membership in universal class of ordered triples. (Contributed by NM, 17-Dec-2008.)
Assertion
Ref Expression
elvvv  |-  ( A  e.  ( ( _V 
X.  _V )  X.  _V ) 
<->  E. x E. y E. z  A  =  <. <. x ,  y
>. ,  z >. )
Distinct variable group:    x, y, z, A

Proof of Theorem elvvv
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 elxp 4556 . 2  |-  ( A  e.  ( ( _V 
X.  _V )  X.  _V ) 
<->  E. w E. z
( A  =  <. w ,  z >.  /\  (
w  e.  ( _V 
X.  _V )  /\  z  e.  _V ) ) )
2 anass 398 . . . . 5  |-  ( ( ( A  =  <. w ,  z >.  /\  w  e.  ( _V  X.  _V ) )  /\  z  e.  _V )  <->  ( A  =  <. w ,  z
>.  /\  ( w  e.  ( _V  X.  _V )  /\  z  e.  _V ) ) )
3 19.42vv 1883 . . . . . 6  |-  ( E. x E. y ( A  =  <. w ,  z >.  /\  w  =  <. x ,  y
>. )  <->  ( A  = 
<. w ,  z >.  /\  E. x E. y  w  =  <. x ,  y >. ) )
4 ancom 264 . . . . . . 7  |-  ( ( w  =  <. x ,  y >.  /\  A  =  <. w ,  z
>. )  <->  ( A  = 
<. w ,  z >.  /\  w  =  <. x ,  y >. )
)
542exbii 1585 . . . . . 6  |-  ( E. x E. y ( w  =  <. x ,  y >.  /\  A  =  <. w ,  z
>. )  <->  E. x E. y
( A  =  <. w ,  z >.  /\  w  =  <. x ,  y
>. ) )
6 vex 2689 . . . . . . . 8  |-  z  e. 
_V
76biantru 300 . . . . . . 7  |-  ( ( A  =  <. w ,  z >.  /\  w  e.  ( _V  X.  _V ) )  <->  ( ( A  =  <. w ,  z >.  /\  w  e.  ( _V  X.  _V ) )  /\  z  e.  _V ) )
8 elvv 4601 . . . . . . . 8  |-  ( w  e.  ( _V  X.  _V )  <->  E. x E. y  w  =  <. x ,  y >. )
98anbi2i 452 . . . . . . 7  |-  ( ( A  =  <. w ,  z >.  /\  w  e.  ( _V  X.  _V ) )  <->  ( A  =  <. w ,  z
>.  /\  E. x E. y  w  =  <. x ,  y >. )
)
107, 9bitr3i 185 . . . . . 6  |-  ( ( ( A  =  <. w ,  z >.  /\  w  e.  ( _V  X.  _V ) )  /\  z  e.  _V )  <->  ( A  =  <. w ,  z
>.  /\  E. x E. y  w  =  <. x ,  y >. )
)
113, 5, 103bitr4ri 212 . . . . 5  |-  ( ( ( A  =  <. w ,  z >.  /\  w  e.  ( _V  X.  _V ) )  /\  z  e.  _V )  <->  E. x E. y ( w  = 
<. x ,  y >.  /\  A  =  <. w ,  z >. )
)
122, 11bitr3i 185 . . . 4  |-  ( ( A  =  <. w ,  z >.  /\  (
w  e.  ( _V 
X.  _V )  /\  z  e.  _V ) )  <->  E. x E. y ( w  = 
<. x ,  y >.  /\  A  =  <. w ,  z >. )
)
13122exbii 1585 . . 3  |-  ( E. w E. z ( A  =  <. w ,  z >.  /\  (
w  e.  ( _V 
X.  _V )  /\  z  e.  _V ) )  <->  E. w E. z E. x E. y ( w  = 
<. x ,  y >.  /\  A  =  <. w ,  z >. )
)
14 exrot4 1669 . . . 4  |-  ( E. x E. y E. w E. z ( w  =  <. x ,  y >.  /\  A  =  <. w ,  z
>. )  <->  E. w E. z E. x E. y ( w  =  <. x ,  y >.  /\  A  =  <. w ,  z
>. ) )
15 excom 1642 . . . . . 6  |-  ( E. w E. z ( w  =  <. x ,  y >.  /\  A  =  <. w ,  z
>. )  <->  E. z E. w
( w  =  <. x ,  y >.  /\  A  =  <. w ,  z
>. ) )
16 vex 2689 . . . . . . . . 9  |-  x  e. 
_V
17 vex 2689 . . . . . . . . 9  |-  y  e. 
_V
1816, 17opex 4151 . . . . . . . 8  |-  <. x ,  y >.  e.  _V
19 opeq1 3705 . . . . . . . . 9  |-  ( w  =  <. x ,  y
>.  ->  <. w ,  z
>.  =  <. <. x ,  y >. ,  z
>. )
2019eqeq2d 2151 . . . . . . . 8  |-  ( w  =  <. x ,  y
>.  ->  ( A  = 
<. w ,  z >.  <->  A  =  <. <. x ,  y
>. ,  z >. ) )
2118, 20ceqsexv 2725 . . . . . . 7  |-  ( E. w ( w  = 
<. x ,  y >.  /\  A  =  <. w ,  z >. )  <->  A  =  <. <. x ,  y
>. ,  z >. )
2221exbii 1584 . . . . . 6  |-  ( E. z E. w ( w  =  <. x ,  y >.  /\  A  =  <. w ,  z
>. )  <->  E. z  A  = 
<. <. x ,  y
>. ,  z >. )
2315, 22bitri 183 . . . . 5  |-  ( E. w E. z ( w  =  <. x ,  y >.  /\  A  =  <. w ,  z
>. )  <->  E. z  A  = 
<. <. x ,  y
>. ,  z >. )
24232exbii 1585 . . . 4  |-  ( E. x E. y E. w E. z ( w  =  <. x ,  y >.  /\  A  =  <. w ,  z
>. )  <->  E. x E. y E. z  A  =  <. <. x ,  y
>. ,  z >. )
2514, 24bitr3i 185 . . 3  |-  ( E. w E. z E. x E. y ( w  =  <. x ,  y >.  /\  A  =  <. w ,  z
>. )  <->  E. x E. y E. z  A  =  <. <. x ,  y
>. ,  z >. )
2613, 25bitri 183 . 2  |-  ( E. w E. z ( A  =  <. w ,  z >.  /\  (
w  e.  ( _V 
X.  _V )  /\  z  e.  _V ) )  <->  E. x E. y E. z  A  =  <. <. x ,  y
>. ,  z >. )
271, 26bitri 183 1  |-  ( A  e.  ( ( _V 
X.  _V )  X.  _V ) 
<->  E. x E. y E. z  A  =  <. <. x ,  y
>. ,  z >. )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1331   E.wex 1468    e. wcel 1480   _Vcvv 2686   <.cop 3530    X. cxp 4537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-opab 3990  df-xp 4545
This theorem is referenced by:  ssrelrel  4639  dftpos3  6159
  Copyright terms: Public domain W3C validator