ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxp2 Unicode version

Theorem elxp2 4391
Description: Membership in a cross product. (Contributed by NM, 23-Feb-2004.)
Assertion
Ref Expression
elxp2  |-  ( A  e.  ( B  X.  C )  <->  E. x  e.  B  E. y  e.  C  A  =  <. x ,  y >.
)
Distinct variable groups:    x, y, A   
x, B, y    x, C, y

Proof of Theorem elxp2
StepHypRef Expression
1 df-rex 2329 . . . 4  |-  ( E. y  e.  C  ( x  e.  B  /\  A  =  <. x ,  y >. )  <->  E. y
( y  e.  C  /\  ( x  e.  B  /\  A  =  <. x ,  y >. )
) )
2 r19.42v 2484 . . . 4  |-  ( E. y  e.  C  ( x  e.  B  /\  A  =  <. x ,  y >. )  <->  ( x  e.  B  /\  E. y  e.  C  A  =  <. x ,  y >.
) )
3 an13 505 . . . . 5  |-  ( ( y  e.  C  /\  ( x  e.  B  /\  A  =  <. x ,  y >. )
)  <->  ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )
43exbii 1512 . . . 4  |-  ( E. y ( y  e.  C  /\  ( x  e.  B  /\  A  =  <. x ,  y
>. ) )  <->  E. y
( A  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
) )
51, 2, 43bitr3i 203 . . 3  |-  ( ( x  e.  B  /\  E. y  e.  C  A  =  <. x ,  y
>. )  <->  E. y ( A  =  <. x ,  y
>.  /\  ( x  e.  B  /\  y  e.  C ) ) )
65exbii 1512 . 2  |-  ( E. x ( x  e.  B  /\  E. y  e.  C  A  =  <. x ,  y >.
)  <->  E. x E. y
( A  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
) )
7 df-rex 2329 . 2  |-  ( E. x  e.  B  E. y  e.  C  A  =  <. x ,  y
>. 
<->  E. x ( x  e.  B  /\  E. y  e.  C  A  =  <. x ,  y
>. ) )
8 elxp 4390 . 2  |-  ( A  e.  ( B  X.  C )  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )
96, 7, 83bitr4ri 206 1  |-  ( A  e.  ( B  X.  C )  <->  E. x  e.  B  E. y  e.  C  A  =  <. x ,  y >.
)
Colors of variables: wff set class
Syntax hints:    /\ wa 101    <-> wb 102    = wceq 1259   E.wex 1397    e. wcel 1409   E.wrex 2324   <.cop 3406    X. cxp 4371
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-rex 2329  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-opab 3847  df-xp 4379
This theorem is referenced by:  opelxp  4402  xpiundi  4426  xpiundir  4427  ssrel2  4458  f1o2ndf1  5877  xpdom2  6336  elreal  6963
  Copyright terms: Public domain W3C validator