ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en2i Unicode version

Theorem en2i 6281
Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 4-Jan-2004.)
Hypotheses
Ref Expression
en2i.1  |-  A  e. 
_V
en2i.2  |-  B  e. 
_V
en2i.3  |-  ( x  e.  A  ->  C  e.  _V )
en2i.4  |-  ( y  e.  B  ->  D  e.  _V )
en2i.5  |-  ( ( x  e.  A  /\  y  =  C )  <->  ( y  e.  B  /\  x  =  D )
)
Assertion
Ref Expression
en2i  |-  A  ~~  B
Distinct variable groups:    x, y, A   
x, B, y    y, C    x, D
Allowed substitution hints:    C( x)    D( y)

Proof of Theorem en2i
StepHypRef Expression
1 en2i.1 . . . 4  |-  A  e. 
_V
21a1i 9 . . 3  |-  ( T. 
->  A  e.  _V )
3 en2i.2 . . . 4  |-  B  e. 
_V
43a1i 9 . . 3  |-  ( T. 
->  B  e.  _V )
5 en2i.3 . . . 4  |-  ( x  e.  A  ->  C  e.  _V )
65a1i 9 . . 3  |-  ( T. 
->  ( x  e.  A  ->  C  e.  _V )
)
7 en2i.4 . . . 4  |-  ( y  e.  B  ->  D  e.  _V )
87a1i 9 . . 3  |-  ( T. 
->  ( y  e.  B  ->  D  e.  _V )
)
9 en2i.5 . . . 4  |-  ( ( x  e.  A  /\  y  =  C )  <->  ( y  e.  B  /\  x  =  D )
)
109a1i 9 . . 3  |-  ( T. 
->  ( ( x  e.  A  /\  y  =  C )  <->  ( y  e.  B  /\  x  =  D ) ) )
112, 4, 6, 8, 10en2d 6279 . 2  |-  ( T. 
->  A  ~~  B )
1211trud 1268 1  |-  A  ~~  B
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    = wceq 1259   T. wtru 1260    e. wcel 1409   _Vcvv 2574   class class class wbr 3792    ~~ cen 6250
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-un 4198
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-mpt 3848  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-en 6253
This theorem is referenced by:  xpsnen  6326  xpassen  6335
  Copyright terms: Public domain W3C validator