ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0ref Unicode version

Theorem enq0ref 7241
Description: The equivalence relation for nonnegative fractions is reflexive. Lemma for enq0er 7243. (Contributed by Jim Kingdon, 14-Nov-2019.)
Assertion
Ref Expression
enq0ref  |-  ( f  e.  ( om  X.  N. )  <->  f ~Q0  f )

Proof of Theorem enq0ref
Dummy variables  u  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxpi 4555 . . . . . 6  |-  ( f  e.  ( om  X.  N. )  ->  E. z E. w ( f  = 
<. z ,  w >.  /\  ( z  e.  om  /\  w  e.  N. )
) )
2 elxpi 4555 . . . . . 6  |-  ( f  e.  ( om  X.  N. )  ->  E. v E. u ( f  = 
<. v ,  u >.  /\  ( v  e.  om  /\  u  e.  N. )
) )
3 ee4anv 1906 . . . . . 6  |-  ( E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  (
z  e.  om  /\  w  e.  N. )
)  /\  ( f  =  <. v ,  u >.  /\  ( v  e. 
om  /\  u  e.  N. ) ) )  <->  ( E. z E. w ( f  =  <. z ,  w >.  /\  ( z  e. 
om  /\  w  e.  N. ) )  /\  E. v E. u ( f  =  <. v ,  u >.  /\  ( v  e. 
om  /\  u  e.  N. ) ) ) )
41, 2, 3sylanbrc 413 . . . . 5  |-  ( f  e.  ( om  X.  N. )  ->  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  ( z  e. 
om  /\  w  e.  N. ) )  /\  (
f  =  <. v ,  u >.  /\  (
v  e.  om  /\  u  e.  N. )
) ) )
5 eqtr2 2158 . . . . . . . . . . . 12  |-  ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  ->  <. z ,  w >.  =  <. v ,  u >. )
6 vex 2689 . . . . . . . . . . . . 13  |-  z  e. 
_V
7 vex 2689 . . . . . . . . . . . . 13  |-  w  e. 
_V
86, 7opth 4159 . . . . . . . . . . . 12  |-  ( <.
z ,  w >.  = 
<. v ,  u >.  <->  (
z  =  v  /\  w  =  u )
)
95, 8sylib 121 . . . . . . . . . . 11  |-  ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  ->  ( z  =  v  /\  w  =  u ) )
10 oveq1 5781 . . . . . . . . . . . 12  |-  ( z  =  v  ->  (
z  .o  u )  =  ( v  .o  u ) )
11 oveq2 5782 . . . . . . . . . . . . 13  |-  ( u  =  w  ->  (
v  .o  u )  =  ( v  .o  w ) )
1211equcoms 1684 . . . . . . . . . . . 12  |-  ( w  =  u  ->  (
v  .o  u )  =  ( v  .o  w ) )
1310, 12sylan9eq 2192 . . . . . . . . . . 11  |-  ( ( z  =  v  /\  w  =  u )  ->  ( z  .o  u
)  =  ( v  .o  w ) )
149, 13syl 14 . . . . . . . . . 10  |-  ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  ->  ( z  .o  u )  =  ( v  .o  w ) )
1514ancli 321 . . . . . . . . 9  |-  ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  ->  ( (
f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( v  .o  w
) ) )
1615ad2ant2r 500 . . . . . . . 8  |-  ( ( ( f  =  <. z ,  w >.  /\  (
z  e.  om  /\  w  e.  N. )
)  /\  ( f  =  <. v ,  u >.  /\  ( v  e. 
om  /\  u  e.  N. ) ) )  -> 
( ( f  = 
<. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  (
z  .o  u )  =  ( v  .o  w ) ) )
17 pinn 7117 . . . . . . . . . . . . . 14  |-  ( w  e.  N.  ->  w  e.  om )
18 nnmcom 6385 . . . . . . . . . . . . . 14  |-  ( ( v  e.  om  /\  w  e.  om )  ->  ( v  .o  w
)  =  ( w  .o  v ) )
1917, 18sylan2 284 . . . . . . . . . . . . 13  |-  ( ( v  e.  om  /\  w  e.  N. )  ->  ( v  .o  w
)  =  ( w  .o  v ) )
2019eqeq2d 2151 . . . . . . . . . . . 12  |-  ( ( v  e.  om  /\  w  e.  N. )  ->  ( ( z  .o  u )  =  ( v  .o  w )  <-> 
( z  .o  u
)  =  ( w  .o  v ) ) )
2120ancoms 266 . . . . . . . . . . 11  |-  ( ( w  e.  N.  /\  v  e.  om )  ->  ( ( z  .o  u )  =  ( v  .o  w )  <-> 
( z  .o  u
)  =  ( w  .o  v ) ) )
2221ad2ant2lr 501 . . . . . . . . . 10  |-  ( ( ( z  e.  om  /\  w  e.  N. )  /\  ( v  e.  om  /\  u  e.  N. )
)  ->  ( (
z  .o  u )  =  ( v  .o  w )  <->  ( z  .o  u )  =  ( w  .o  v ) ) )
2322ad2ant2l 499 . . . . . . . . 9  |-  ( ( ( f  =  <. z ,  w >.  /\  (
z  e.  om  /\  w  e.  N. )
)  /\  ( f  =  <. v ,  u >.  /\  ( v  e. 
om  /\  u  e.  N. ) ) )  -> 
( ( z  .o  u )  =  ( v  .o  w )  <-> 
( z  .o  u
)  =  ( w  .o  v ) ) )
2423anbi2d 459 . . . . . . . 8  |-  ( ( ( f  =  <. z ,  w >.  /\  (
z  e.  om  /\  w  e.  N. )
)  /\  ( f  =  <. v ,  u >.  /\  ( v  e. 
om  /\  u  e.  N. ) ) )  -> 
( ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( v  .o  w ) )  <-> 
( ( f  = 
<. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  (
z  .o  u )  =  ( w  .o  v ) ) ) )
2516, 24mpbid 146 . . . . . . 7  |-  ( ( ( f  =  <. z ,  w >.  /\  (
z  e.  om  /\  w  e.  N. )
)  /\  ( f  =  <. v ,  u >.  /\  ( v  e. 
om  /\  u  e.  N. ) ) )  -> 
( ( f  = 
<. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  (
z  .o  u )  =  ( w  .o  v ) ) )
26252eximi 1580 . . . . . 6  |-  ( E. v E. u ( ( f  =  <. z ,  w >.  /\  (
z  e.  om  /\  w  e.  N. )
)  /\  ( f  =  <. v ,  u >.  /\  ( v  e. 
om  /\  u  e.  N. ) ) )  ->  E. v E. u ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) ) )
27262eximi 1580 . . . . 5  |-  ( E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  (
z  e.  om  /\  w  e.  N. )
)  /\  ( f  =  <. v ,  u >.  /\  ( v  e. 
om  /\  u  e.  N. ) ) )  ->  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) ) )
284, 27syl 14 . . . 4  |-  ( f  e.  ( om  X.  N. )  ->  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )
2928ancli 321 . . 3  |-  ( f  e.  ( om  X.  N. )  ->  ( f  e.  ( om  X.  N. )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
30 vex 2689 . . . . 5  |-  f  e. 
_V
31 eleq1 2202 . . . . . . 7  |-  ( x  =  f  ->  (
x  e.  ( om 
X.  N. )  <->  f  e.  ( om  X.  N. )
) )
3231anbi1d 460 . . . . . 6  |-  ( x  =  f  ->  (
( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  <-> 
( f  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) ) ) )
33 eqeq1 2146 . . . . . . . . 9  |-  ( x  =  f  ->  (
x  =  <. z ,  w >.  <->  f  =  <. z ,  w >. )
)
3433anbi1d 460 . . . . . . . 8  |-  ( x  =  f  ->  (
( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  <->  ( f  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. ) ) )
3534anbi1d 460 . . . . . . 7  |-  ( x  =  f  ->  (
( ( x  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  (
z  .o  u )  =  ( w  .o  v ) )  <->  ( (
f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) ) ) )
36354exbidv 1842 . . . . . 6  |-  ( x  =  f  ->  ( E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) )  <->  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
3732, 36anbi12d 464 . . . . 5  |-  ( x  =  f  ->  (
( ( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. )
)  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  ( ( f  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) ) )
38 eleq1 2202 . . . . . . 7  |-  ( y  =  f  ->  (
y  e.  ( om 
X.  N. )  <->  f  e.  ( om  X.  N. )
) )
3938anbi2d 459 . . . . . 6  |-  ( y  =  f  ->  (
( f  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  <-> 
( f  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) ) ) )
40 eqeq1 2146 . . . . . . . . 9  |-  ( y  =  f  ->  (
y  =  <. v ,  u >.  <->  f  =  <. v ,  u >. )
)
4140anbi2d 459 . . . . . . . 8  |-  ( y  =  f  ->  (
( f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  <->  ( f  = 
<. z ,  w >.  /\  f  =  <. v ,  u >. ) ) )
4241anbi1d 460 . . . . . . 7  |-  ( y  =  f  ->  (
( ( f  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  (
z  .o  u )  =  ( w  .o  v ) )  <->  ( (
f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) ) ) )
43424exbidv 1842 . . . . . 6  |-  ( y  =  f  ->  ( E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) )  <->  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
4439, 43anbi12d 464 . . . . 5  |-  ( y  =  f  ->  (
( ( f  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. )
)  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  ( ( f  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) ) )
45 df-enq0 7232 . . . . 5  |- ~Q0  =  { <. x ,  y >.  |  ( ( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) }
4630, 30, 37, 44, 45brab 4194 . . . 4  |-  ( f ~Q0  f  <->  ( ( f  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
47 anidm 393 . . . . 5  |-  ( ( f  e.  ( om 
X.  N. )  /\  f  e.  ( om  X.  N. ) )  <->  f  e.  ( om  X.  N. )
)
4847anbi1i 453 . . . 4  |-  ( ( ( f  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  ( f  e.  ( om  X.  N. )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
4946, 48bitri 183 . . 3  |-  ( f ~Q0  f  <->  ( f  e.  ( om 
X.  N. )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
5029, 49sylibr 133 . 2  |-  ( f  e.  ( om  X.  N. )  ->  f ~Q0  f )
5149simplbi 272 . 2  |-  ( f ~Q0  f  ->  f  e.  ( om 
X.  N. ) )
5250, 51impbii 125 1  |-  ( f  e.  ( om  X.  N. )  <->  f ~Q0  f )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1331   E.wex 1468    e. wcel 1480   <.cop 3530   class class class wbr 3929   omcom 4504    X. cxp 4537  (class class class)co 5774    .o comu 6311   N.cnpi 7080   ~Q0 ceq0 7094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-oadd 6317  df-omul 6318  df-ni 7112  df-enq0 7232
This theorem is referenced by:  enq0er  7243
  Copyright terms: Public domain W3C validator