ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0sym Unicode version

Theorem enq0sym 7208
Description: The equivalence relation for nonnegative fractions is symmetric. Lemma for enq0er 7211. (Contributed by Jim Kingdon, 14-Nov-2019.)
Assertion
Ref Expression
enq0sym  |-  ( f ~Q0  g  ->  g ~Q0  f )

Proof of Theorem enq0sym
Dummy variables  a  b  c  d  u  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2663 . . . . . . . 8  |-  f  e. 
_V
2 vex 2663 . . . . . . . 8  |-  g  e. 
_V
3 eleq1 2180 . . . . . . . . . 10  |-  ( x  =  f  ->  (
x  e.  ( om 
X.  N. )  <->  f  e.  ( om  X.  N. )
) )
43anbi1d 460 . . . . . . . . 9  |-  ( x  =  f  ->  (
( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  <-> 
( f  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) ) ) )
5 eqeq1 2124 . . . . . . . . . . . 12  |-  ( x  =  f  ->  (
x  =  <. z ,  w >.  <->  f  =  <. z ,  w >. )
)
65anbi1d 460 . . . . . . . . . . 11  |-  ( x  =  f  ->  (
( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  <->  ( f  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. ) ) )
76anbi1d 460 . . . . . . . . . 10  |-  ( x  =  f  ->  (
( ( x  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  (
z  .o  u )  =  ( w  .o  v ) )  <->  ( (
f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) ) ) )
874exbidv 1826 . . . . . . . . 9  |-  ( x  =  f  ->  ( E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) )  <->  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
94, 8anbi12d 464 . . . . . . . 8  |-  ( x  =  f  ->  (
( ( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. )
)  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  ( ( f  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) ) )
10 eleq1 2180 . . . . . . . . . 10  |-  ( y  =  g  ->  (
y  e.  ( om 
X.  N. )  <->  g  e.  ( om  X.  N. )
) )
1110anbi2d 459 . . . . . . . . 9  |-  ( y  =  g  ->  (
( f  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  <-> 
( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) ) ) )
12 eqeq1 2124 . . . . . . . . . . . 12  |-  ( y  =  g  ->  (
y  =  <. v ,  u >.  <->  g  =  <. v ,  u >. )
)
1312anbi2d 459 . . . . . . . . . . 11  |-  ( y  =  g  ->  (
( f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  <->  ( f  = 
<. z ,  w >.  /\  g  =  <. v ,  u >. ) ) )
1413anbi1d 460 . . . . . . . . . 10  |-  ( y  =  g  ->  (
( ( f  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  (
z  .o  u )  =  ( w  .o  v ) )  <->  ( (
f  =  <. z ,  w >.  /\  g  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) ) ) )
15144exbidv 1826 . . . . . . . . 9  |-  ( y  =  g  ->  ( E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) )  <->  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  g  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
1611, 15anbi12d 464 . . . . . . . 8  |-  ( y  =  g  ->  (
( ( f  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. )
)  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  g  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) ) )
17 df-enq0 7200 . . . . . . . 8  |- ~Q0  =  { <. x ,  y >.  |  ( ( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) }
181, 2, 9, 16, 17brab 4164 . . . . . . 7  |-  ( f ~Q0  g  <->  ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  g  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
1918biimpi 119 . . . . . 6  |-  ( f ~Q0  g  ->  ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. )
)  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  g  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
20 opeq12 3677 . . . . . . . . . . 11  |-  ( ( z  =  a  /\  w  =  b )  -> 
<. z ,  w >.  = 
<. a ,  b >.
)
2120eqeq2d 2129 . . . . . . . . . 10  |-  ( ( z  =  a  /\  w  =  b )  ->  ( f  =  <. z ,  w >.  <->  f  =  <. a ,  b >.
) )
2221anbi1d 460 . . . . . . . . 9  |-  ( ( z  =  a  /\  w  =  b )  ->  ( ( f  = 
<. z ,  w >.  /\  g  =  <. v ,  u >. )  <->  ( f  =  <. a ,  b
>.  /\  g  =  <. v ,  u >. )
) )
23 simpl 108 . . . . . . . . . . 11  |-  ( ( z  =  a  /\  w  =  b )  ->  z  =  a )
2423oveq1d 5757 . . . . . . . . . 10  |-  ( ( z  =  a  /\  w  =  b )  ->  ( z  .o  u
)  =  ( a  .o  u ) )
25 simpr 109 . . . . . . . . . . 11  |-  ( ( z  =  a  /\  w  =  b )  ->  w  =  b )
2625oveq1d 5757 . . . . . . . . . 10  |-  ( ( z  =  a  /\  w  =  b )  ->  ( w  .o  v
)  =  ( b  .o  v ) )
2724, 26eqeq12d 2132 . . . . . . . . 9  |-  ( ( z  =  a  /\  w  =  b )  ->  ( ( z  .o  u )  =  ( w  .o  v )  <-> 
( a  .o  u
)  =  ( b  .o  v ) ) )
2822, 27anbi12d 464 . . . . . . . 8  |-  ( ( z  =  a  /\  w  =  b )  ->  ( ( ( f  =  <. z ,  w >.  /\  g  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) )  <-> 
( ( f  = 
<. a ,  b >.  /\  g  =  <. v ,  u >. )  /\  ( a  .o  u
)  =  ( b  .o  v ) ) ) )
29 opeq12 3677 . . . . . . . . . . 11  |-  ( ( v  =  c  /\  u  =  d )  -> 
<. v ,  u >.  = 
<. c ,  d >.
)
3029eqeq2d 2129 . . . . . . . . . 10  |-  ( ( v  =  c  /\  u  =  d )  ->  ( g  =  <. v ,  u >.  <->  g  =  <. c ,  d >.
) )
3130anbi2d 459 . . . . . . . . 9  |-  ( ( v  =  c  /\  u  =  d )  ->  ( ( f  = 
<. a ,  b >.  /\  g  =  <. v ,  u >. )  <->  ( f  =  <. a ,  b >.  /\  g  =  <. c ,  d
>. ) ) )
32 simpr 109 . . . . . . . . . . 11  |-  ( ( v  =  c  /\  u  =  d )  ->  u  =  d )
3332oveq2d 5758 . . . . . . . . . 10  |-  ( ( v  =  c  /\  u  =  d )  ->  ( a  .o  u
)  =  ( a  .o  d ) )
34 simpl 108 . . . . . . . . . . 11  |-  ( ( v  =  c  /\  u  =  d )  ->  v  =  c )
3534oveq2d 5758 . . . . . . . . . 10  |-  ( ( v  =  c  /\  u  =  d )  ->  ( b  .o  v
)  =  ( b  .o  c ) )
3633, 35eqeq12d 2132 . . . . . . . . 9  |-  ( ( v  =  c  /\  u  =  d )  ->  ( ( a  .o  u )  =  ( b  .o  v )  <-> 
( a  .o  d
)  =  ( b  .o  c ) ) )
3731, 36anbi12d 464 . . . . . . . 8  |-  ( ( v  =  c  /\  u  =  d )  ->  ( ( ( f  =  <. a ,  b
>.  /\  g  =  <. v ,  u >. )  /\  ( a  .o  u
)  =  ( b  .o  v ) )  <-> 
( ( f  = 
<. a ,  b >.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) ) )
3828, 37cbvex4v 1882 . . . . . . 7  |-  ( E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  g  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) )  <->  E. a E. b E. c E. d ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )
3938anbi2i 452 . . . . . 6  |-  ( ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  g  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  E. a E. b E. c E. d ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) ) )
4019, 39sylib 121 . . . . 5  |-  ( f ~Q0  g  ->  ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. )
)  /\  E. a E. b E. c E. d ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) ) )
41 19.42vv 1865 . . . . 5  |-  ( E. a E. b ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  E. c E. d ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  <->  ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  E. a E. b E. c E. d ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) ) )
4240, 41sylibr 133 . . . 4  |-  ( f ~Q0  g  ->  E. a E. b
( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. )
)  /\  E. c E. d ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) ) )
43 19.42vv 1865 . . . . 5  |-  ( E. c E. d ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  <->  ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  E. c E. d ( ( f  =  <. a ,  b >.  /\  g  =  <. c ,  d
>. )  /\  (
a  .o  d )  =  ( b  .o  c ) ) ) )
44432exbii 1570 . . . 4  |-  ( E. a E. b E. c E. d ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  <->  E. a E. b
( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. )
)  /\  E. c E. d ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) ) )
4542, 44sylibr 133 . . 3  |-  ( f ~Q0  g  ->  E. a E. b E. c E. d ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) ) )
46 pm3.22 263 . . . . . . 7  |-  ( ( f  e.  ( om 
X.  N. )  /\  g  e.  ( om  X.  N. ) )  ->  (
g  e.  ( om 
X.  N. )  /\  f  e.  ( om  X.  N. ) ) )
4746adantr 274 . . . . . 6  |-  ( ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  ->  ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. )
) )
48 pm3.22 263 . . . . . . 7  |-  ( ( f  =  <. a ,  b >.  /\  g  =  <. c ,  d
>. )  ->  ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )
)
4948ad2antrl 481 . . . . . 6  |-  ( ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  ->  ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )
)
50 simprr 506 . . . . . . . 8  |-  ( ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  ->  ( a  .o  d )  =  ( b  .o  c ) )
51 eleq1 2180 . . . . . . . . . . . . . 14  |-  ( f  =  <. a ,  b
>.  ->  ( f  e.  ( om  X.  N. ) 
<-> 
<. a ,  b >.  e.  ( om  X.  N. ) ) )
52 opelxp 4539 . . . . . . . . . . . . . 14  |-  ( <.
a ,  b >.  e.  ( om  X.  N. ) 
<->  ( a  e.  om  /\  b  e.  N. )
)
5351, 52syl6bb 195 . . . . . . . . . . . . 13  |-  ( f  =  <. a ,  b
>.  ->  ( f  e.  ( om  X.  N. ) 
<->  ( a  e.  om  /\  b  e.  N. )
) )
5453biimpcd 158 . . . . . . . . . . . 12  |-  ( f  e.  ( om  X.  N. )  ->  ( f  =  <. a ,  b
>.  ->  ( a  e. 
om  /\  b  e.  N. ) ) )
55 eleq1 2180 . . . . . . . . . . . . . 14  |-  ( g  =  <. c ,  d
>.  ->  ( g  e.  ( om  X.  N. ) 
<-> 
<. c ,  d >.  e.  ( om  X.  N. ) ) )
56 opelxp 4539 . . . . . . . . . . . . . 14  |-  ( <.
c ,  d >.  e.  ( om  X.  N. ) 
<->  ( c  e.  om  /\  d  e.  N. )
)
5755, 56syl6bb 195 . . . . . . . . . . . . 13  |-  ( g  =  <. c ,  d
>.  ->  ( g  e.  ( om  X.  N. ) 
<->  ( c  e.  om  /\  d  e.  N. )
) )
5857biimpcd 158 . . . . . . . . . . . 12  |-  ( g  e.  ( om  X.  N. )  ->  ( g  =  <. c ,  d
>.  ->  ( c  e. 
om  /\  d  e.  N. ) ) )
5954, 58im2anan9 572 . . . . . . . . . . 11  |-  ( ( f  e.  ( om 
X.  N. )  /\  g  e.  ( om  X.  N. ) )  ->  (
( f  =  <. a ,  b >.  /\  g  =  <. c ,  d
>. )  ->  ( ( a  e.  om  /\  b  e.  N. )  /\  ( c  e.  om  /\  d  e.  N. )
) ) )
6059imp 123 . . . . . . . . . 10  |-  ( ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( f  = 
<. a ,  b >.  /\  g  =  <. c ,  d >. )
)  ->  ( (
a  e.  om  /\  b  e.  N. )  /\  ( c  e.  om  /\  d  e.  N. )
) )
6160adantrr 470 . . . . . . . . 9  |-  ( ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  ->  ( (
a  e.  om  /\  b  e.  N. )  /\  ( c  e.  om  /\  d  e.  N. )
) )
62 pinn 7085 . . . . . . . . . . . 12  |-  ( d  e.  N.  ->  d  e.  om )
63 nnmcom 6353 . . . . . . . . . . . 12  |-  ( ( a  e.  om  /\  d  e.  om )  ->  ( a  .o  d
)  =  ( d  .o  a ) )
6462, 63sylan2 284 . . . . . . . . . . 11  |-  ( ( a  e.  om  /\  d  e.  N. )  ->  ( a  .o  d
)  =  ( d  .o  a ) )
65 pinn 7085 . . . . . . . . . . . 12  |-  ( b  e.  N.  ->  b  e.  om )
66 nnmcom 6353 . . . . . . . . . . . 12  |-  ( ( b  e.  om  /\  c  e.  om )  ->  ( b  .o  c
)  =  ( c  .o  b ) )
6765, 66sylan 281 . . . . . . . . . . 11  |-  ( ( b  e.  N.  /\  c  e.  om )  ->  ( b  .o  c
)  =  ( c  .o  b ) )
6864, 67eqeqan12d 2133 . . . . . . . . . 10  |-  ( ( ( a  e.  om  /\  d  e.  N. )  /\  ( b  e.  N.  /\  c  e.  om )
)  ->  ( (
a  .o  d )  =  ( b  .o  c )  <->  ( d  .o  a )  =  ( c  .o  b ) ) )
6968an42s 563 . . . . . . . . 9  |-  ( ( ( a  e.  om  /\  b  e.  N. )  /\  ( c  e.  om  /\  d  e.  N. )
)  ->  ( (
a  .o  d )  =  ( b  .o  c )  <->  ( d  .o  a )  =  ( c  .o  b ) ) )
7061, 69syl 14 . . . . . . . 8  |-  ( ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  ->  ( (
a  .o  d )  =  ( b  .o  c )  <->  ( d  .o  a )  =  ( c  .o  b ) ) )
7150, 70mpbid 146 . . . . . . 7  |-  ( ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  ->  ( d  .o  a )  =  ( c  .o  b ) )
7271eqcomd 2123 . . . . . 6  |-  ( ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  ->  ( c  .o  b )  =  ( d  .o  a ) )
7347, 49, 72jca32 308 . . . . 5  |-  ( ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  ->  ( (
g  e.  ( om 
X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  (
( g  =  <. c ,  d >.  /\  f  =  <. a ,  b
>. )  /\  (
c  .o  b )  =  ( d  .o  a ) ) ) )
74732eximi 1565 . . . 4  |-  ( E. c E. d ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  ->  E. c E. d ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  (
( g  =  <. c ,  d >.  /\  f  =  <. a ,  b
>. )  /\  (
c  .o  b )  =  ( d  .o  a ) ) ) )
75742eximi 1565 . . 3  |-  ( E. a E. b E. c E. d ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  ->  E. a E. b E. c E. d ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  (
( g  =  <. c ,  d >.  /\  f  =  <. a ,  b
>. )  /\  (
c  .o  b )  =  ( d  .o  a ) ) ) )
7645, 75syl 14 . 2  |-  ( f ~Q0  g  ->  E. a E. b E. c E. d ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) ) )
77 exrot4 1654 . . 3  |-  ( E. a E. b E. c E. d ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) )  <->  E. c E. d E. a E. b ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) ) )
78 19.42vv 1865 . . . . 5  |-  ( E. a E. b ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) )  <->  ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. a E. b ( ( g  =  <. c ,  d >.  /\  f  =  <. a ,  b
>. )  /\  (
c  .o  b )  =  ( d  .o  a ) ) ) )
79782exbii 1570 . . . 4  |-  ( E. c E. d E. a E. b ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) )  <->  E. c E. d
( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. )
)  /\  E. a E. b ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) ) )
80 19.42vv 1865 . . . . 5  |-  ( E. c E. d ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. a E. b ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) )  <->  ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. c E. d E. a E. b ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) ) )
81 opeq12 3677 . . . . . . . . . 10  |-  ( ( z  =  c  /\  w  =  d )  -> 
<. z ,  w >.  = 
<. c ,  d >.
)
8281eqeq2d 2129 . . . . . . . . 9  |-  ( ( z  =  c  /\  w  =  d )  ->  ( g  =  <. z ,  w >.  <->  g  =  <. c ,  d >.
) )
8382anbi1d 460 . . . . . . . 8  |-  ( ( z  =  c  /\  w  =  d )  ->  ( ( g  = 
<. z ,  w >.  /\  f  =  <. v ,  u >. )  <->  ( g  =  <. c ,  d
>.  /\  f  =  <. v ,  u >. )
) )
84 simpl 108 . . . . . . . . . 10  |-  ( ( z  =  c  /\  w  =  d )  ->  z  =  c )
8584oveq1d 5757 . . . . . . . . 9  |-  ( ( z  =  c  /\  w  =  d )  ->  ( z  .o  u
)  =  ( c  .o  u ) )
86 simpr 109 . . . . . . . . . 10  |-  ( ( z  =  c  /\  w  =  d )  ->  w  =  d )
8786oveq1d 5757 . . . . . . . . 9  |-  ( ( z  =  c  /\  w  =  d )  ->  ( w  .o  v
)  =  ( d  .o  v ) )
8885, 87eqeq12d 2132 . . . . . . . 8  |-  ( ( z  =  c  /\  w  =  d )  ->  ( ( z  .o  u )  =  ( w  .o  v )  <-> 
( c  .o  u
)  =  ( d  .o  v ) ) )
8983, 88anbi12d 464 . . . . . . 7  |-  ( ( z  =  c  /\  w  =  d )  ->  ( ( ( g  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) )  <-> 
( ( g  = 
<. c ,  d >.  /\  f  =  <. v ,  u >. )  /\  ( c  .o  u
)  =  ( d  .o  v ) ) ) )
90 opeq12 3677 . . . . . . . . . 10  |-  ( ( v  =  a  /\  u  =  b )  -> 
<. v ,  u >.  = 
<. a ,  b >.
)
9190eqeq2d 2129 . . . . . . . . 9  |-  ( ( v  =  a  /\  u  =  b )  ->  ( f  =  <. v ,  u >.  <->  f  =  <. a ,  b >.
) )
9291anbi2d 459 . . . . . . . 8  |-  ( ( v  =  a  /\  u  =  b )  ->  ( ( g  = 
<. c ,  d >.  /\  f  =  <. v ,  u >. )  <->  ( g  =  <. c ,  d >.  /\  f  =  <. a ,  b
>. ) ) )
93 simpr 109 . . . . . . . . . 10  |-  ( ( v  =  a  /\  u  =  b )  ->  u  =  b )
9493oveq2d 5758 . . . . . . . . 9  |-  ( ( v  =  a  /\  u  =  b )  ->  ( c  .o  u
)  =  ( c  .o  b ) )
95 simpl 108 . . . . . . . . . 10  |-  ( ( v  =  a  /\  u  =  b )  ->  v  =  a )
9695oveq2d 5758 . . . . . . . . 9  |-  ( ( v  =  a  /\  u  =  b )  ->  ( d  .o  v
)  =  ( d  .o  a ) )
9794, 96eqeq12d 2132 . . . . . . . 8  |-  ( ( v  =  a  /\  u  =  b )  ->  ( ( c  .o  u )  =  ( d  .o  v )  <-> 
( c  .o  b
)  =  ( d  .o  a ) ) )
9892, 97anbi12d 464 . . . . . . 7  |-  ( ( v  =  a  /\  u  =  b )  ->  ( ( ( g  =  <. c ,  d
>.  /\  f  =  <. v ,  u >. )  /\  ( c  .o  u
)  =  ( d  .o  v ) )  <-> 
( ( g  = 
<. c ,  d >.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) ) )
9989, 98cbvex4v 1882 . . . . . 6  |-  ( E. z E. w E. v E. u ( ( g  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) )  <->  E. c E. d E. a E. b ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) )
100 eleq1 2180 . . . . . . . . . 10  |-  ( x  =  g  ->  (
x  e.  ( om 
X.  N. )  <->  g  e.  ( om  X.  N. )
) )
101100anbi1d 460 . . . . . . . . 9  |-  ( x  =  g  ->  (
( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  <-> 
( g  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) ) ) )
102 eqeq1 2124 . . . . . . . . . . . 12  |-  ( x  =  g  ->  (
x  =  <. z ,  w >.  <->  g  =  <. z ,  w >. )
)
103102anbi1d 460 . . . . . . . . . . 11  |-  ( x  =  g  ->  (
( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  <->  ( g  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. ) ) )
104103anbi1d 460 . . . . . . . . . 10  |-  ( x  =  g  ->  (
( ( x  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  (
z  .o  u )  =  ( w  .o  v ) )  <->  ( (
g  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) ) ) )
1051044exbidv 1826 . . . . . . . . 9  |-  ( x  =  g  ->  ( E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) )  <->  E. z E. w E. v E. u ( ( g  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
106101, 105anbi12d 464 . . . . . . . 8  |-  ( x  =  g  ->  (
( ( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. )
)  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  ( ( g  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( g  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) ) )
107 eleq1 2180 . . . . . . . . . 10  |-  ( y  =  f  ->  (
y  e.  ( om 
X.  N. )  <->  f  e.  ( om  X.  N. )
) )
108107anbi2d 459 . . . . . . . . 9  |-  ( y  =  f  ->  (
( g  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  <-> 
( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) ) ) )
109 eqeq1 2124 . . . . . . . . . . . 12  |-  ( y  =  f  ->  (
y  =  <. v ,  u >.  <->  f  =  <. v ,  u >. )
)
110109anbi2d 459 . . . . . . . . . . 11  |-  ( y  =  f  ->  (
( g  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  <->  ( g  = 
<. z ,  w >.  /\  f  =  <. v ,  u >. ) ) )
111110anbi1d 460 . . . . . . . . . 10  |-  ( y  =  f  ->  (
( ( g  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  (
z  .o  u )  =  ( w  .o  v ) )  <->  ( (
g  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) ) ) )
1121114exbidv 1826 . . . . . . . . 9  |-  ( y  =  f  ->  ( E. z E. w E. v E. u ( ( g  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) )  <->  E. z E. w E. v E. u ( ( g  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
113108, 112anbi12d 464 . . . . . . . 8  |-  ( y  =  f  ->  (
( ( g  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. )
)  /\  E. z E. w E. v E. u ( ( g  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( g  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) ) )
1142, 1, 106, 113, 17brab 4164 . . . . . . 7  |-  ( g ~Q0  f  <->  ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( g  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
115114biimpri 132 . . . . . 6  |-  ( ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( g  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  ->  g ~Q0  f )
11699, 115sylan2br 286 . . . . 5  |-  ( ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. c E. d E. a E. b ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) )  ->  g ~Q0  f )
11780, 116sylbi 120 . . . 4  |-  ( E. c E. d ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. a E. b ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) )  ->  g ~Q0  f )
11879, 117sylbi 120 . . 3  |-  ( E. c E. d E. a E. b ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) )  ->  g ~Q0  f )
11977, 118sylbi 120 . 2  |-  ( E. a E. b E. c E. d ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) )  ->  g ~Q0  f )
12076, 119syl 14 1  |-  ( f ~Q0  g  ->  g ~Q0  f )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1316   E.wex 1453    e. wcel 1465   <.cop 3500   class class class wbr 3899   omcom 4474    X. cxp 4507  (class class class)co 5742    .o comu 6279   N.cnpi 7048   ~Q0 ceq0 7062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-oadd 6285  df-omul 6286  df-ni 7080  df-enq0 7200
This theorem is referenced by:  enq0er  7211
  Copyright terms: Public domain W3C validator