ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enqdc Unicode version

Theorem enqdc 6649
Description: The equivalence relation for positive fractions is decidable. (Contributed by Jim Kingdon, 7-Sep-2019.)
Assertion
Ref Expression
enqdc  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  -> DECID  <. A ,  B >.  ~Q  <. C ,  D >. )

Proof of Theorem enqdc
StepHypRef Expression
1 mulclpi 6616 . . . 4  |-  ( ( A  e.  N.  /\  D  e.  N. )  ->  ( A  .N  D
)  e.  N. )
2 mulclpi 6616 . . . 4  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( B  .N  C
)  e.  N. )
3 pinn 6597 . . . . 5  |-  ( ( A  .N  D )  e.  N.  ->  ( A  .N  D )  e. 
om )
4 pinn 6597 . . . . 5  |-  ( ( B  .N  C )  e.  N.  ->  ( B  .N  C )  e. 
om )
5 nndceq 6164 . . . . 5  |-  ( ( ( A  .N  D
)  e.  om  /\  ( B  .N  C
)  e.  om )  -> DECID  ( A  .N  D )  =  ( B  .N  C ) )
63, 4, 5syl2an 283 . . . 4  |-  ( ( ( A  .N  D
)  e.  N.  /\  ( B  .N  C
)  e.  N. )  -> DECID  ( A  .N  D )  =  ( B  .N  C ) )
71, 2, 6syl2an 283 . . 3  |-  ( ( ( A  e.  N.  /\  D  e.  N. )  /\  ( B  e.  N.  /\  C  e.  N. )
)  -> DECID  ( A  .N  D
)  =  ( B  .N  C ) )
87an42s 554 . 2  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  -> DECID  ( A  .N  D
)  =  ( B  .N  C ) )
9 enqbreq 6644 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( <. A ,  B >.  ~Q  <. C ,  D >.  <->  ( A  .N  D )  =  ( B  .N  C ) ) )
109dcbid 782 . 2  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  (DECID  <. A ,  B >.  ~Q  <. C ,  D >. 
<-> DECID  ( A  .N  D )  =  ( B  .N  C ) ) )
118, 10mpbird 165 1  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  -> DECID  <. A ,  B >.  ~Q  <. C ,  D >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102  DECID wdc 776    = wceq 1285    e. wcel 1434   <.cop 3420   class class class wbr 3806   omcom 4360  (class class class)co 5564   N.cnpi 6560    .N cmi 6562    ~Q ceq 6567
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3914  ax-sep 3917  ax-nul 3925  ax-pow 3969  ax-pr 3993  ax-un 4217  ax-setind 4309  ax-iinf 4358
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2826  df-csb 2919  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-nul 3269  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-int 3658  df-iun 3701  df-br 3807  df-opab 3861  df-mpt 3862  df-tr 3897  df-id 4077  df-iord 4150  df-on 4152  df-suc 4155  df-iom 4361  df-xp 4398  df-rel 4399  df-cnv 4400  df-co 4401  df-dm 4402  df-rn 4403  df-res 4404  df-ima 4405  df-iota 4918  df-fun 4955  df-fn 4956  df-f 4957  df-f1 4958  df-fo 4959  df-f1o 4960  df-fv 4961  df-ov 5567  df-oprab 5568  df-mpt2 5569  df-1st 5819  df-2nd 5820  df-recs 5975  df-irdg 6040  df-oadd 6090  df-omul 6091  df-ni 6592  df-mi 6594  df-enq 6635
This theorem is referenced by:  enqdc1  6650
  Copyright terms: Public domain W3C validator