ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enqex Unicode version

Theorem enqex 7161
Description: The equivalence relation for positive fractions exists. (Contributed by NM, 3-Sep-1995.)
Assertion
Ref Expression
enqex  |-  ~Q  e.  _V

Proof of Theorem enqex
Dummy variables  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 niex 7113 . . . 4  |-  N.  e.  _V
21, 1xpex 4649 . . 3  |-  ( N. 
X.  N. )  e.  _V
32, 2xpex 4649 . 2  |-  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) )  e.  _V
4 df-enq 7148 . . 3  |-  ~Q  =  { <. x ,  y
>.  |  ( (
x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u
)  =  ( w  .N  v ) ) ) }
5 opabssxp 4608 . . 3  |-  { <. x ,  y >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u
)  =  ( w  .N  v ) ) ) }  C_  (
( N.  X.  N. )  X.  ( N.  X.  N. ) )
64, 5eqsstri 3124 . 2  |-  ~Q  C_  (
( N.  X.  N. )  X.  ( N.  X.  N. ) )
73, 6ssexi 4061 1  |-  ~Q  e.  _V
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1331   E.wex 1468    e. wcel 1480   _Vcvv 2681   <.cop 3525   {copab 3983    X. cxp 4532  (class class class)co 5767   N.cnpi 7073    .N cmi 7075    ~Q ceq 7080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-opab 3985  df-iom 4500  df-xp 4540  df-ni 7105  df-enq 7148
This theorem is referenced by:  1nq  7167  addpipqqs  7171  mulpipqqs  7174  ordpipqqs  7175  addclnq  7176  mulclnq  7177  dmaddpq  7180  dmmulpq  7181  recexnq  7191  ltexnqq  7209  prarloclemarch  7219  prarloclemarch2  7220  nnnq  7223  nqpnq0nq  7254  prarloclemlt  7294  prarloclemlo  7295  prarloclemcalc  7303  nqprm  7343
  Copyright terms: Public domain W3C validator