Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  enrbreq Unicode version

Theorem enrbreq 6877
 Description: Equivalence relation for signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.)
Assertion
Ref Expression
enrbreq

Proof of Theorem enrbreq
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-enr 6869 . 2
21ecopoveq 6232 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 101   wb 102   wceq 1259   wcel 1409  cop 3406   class class class wbr 3792  (class class class)co 5540  cnp 6447   cpp 6449   cer 6452 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972 This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-xp 4379  df-iota 4895  df-fv 4938  df-ov 5543  df-enr 6869 This theorem is referenced by:  enreceq  6879  addcmpblnr  6882  mulcmpblnr  6884
 Copyright terms: Public domain W3C validator