ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ensn1 Unicode version

Theorem ensn1 6306
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.)
Hypothesis
Ref Expression
ensn1.1  |-  A  e. 
_V
Assertion
Ref Expression
ensn1  |-  { A }  ~~  1o

Proof of Theorem ensn1
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 ensn1.1 . . . . 5  |-  A  e. 
_V
2 0ex 3911 . . . . 5  |-  (/)  e.  _V
31, 2f1osn 5193 . . . 4  |-  { <. A ,  (/) >. } : { A } -1-1-onto-> { (/) }
41, 2opex 3993 . . . . . 6  |-  <. A ,  (/)
>.  e.  _V
54snex 3964 . . . . 5  |-  { <. A ,  (/) >. }  e.  _V
6 f1oeq1 5144 . . . . 5  |-  ( f  =  { <. A ,  (/)
>. }  ->  ( f : { A } -1-1-onto-> { (/) }  <->  { <. A ,  (/)
>. } : { A }
-1-1-onto-> { (/) } ) )
75, 6spcev 2664 . . . 4  |-  ( {
<. A ,  (/) >. } : { A } -1-1-onto-> { (/) }  ->  E. f 
f : { A }
-1-1-onto-> { (/) } )
83, 7ax-mp 7 . . 3  |-  E. f 
f : { A }
-1-1-onto-> { (/) }
9 bren 6258 . . 3  |-  ( { A }  ~~  { (/)
}  <->  E. f  f : { A } -1-1-onto-> { (/) } )
108, 9mpbir 138 . 2  |-  { A }  ~~  { (/) }
11 df1o2 6043 . 2  |-  1o  =  { (/) }
1210, 11breqtrri 3816 1  |-  { A }  ~~  1o
Colors of variables: wff set class
Syntax hints:   E.wex 1397    e. wcel 1409   _Vcvv 2574   (/)c0 3251   {csn 3402   <.cop 3405   class class class wbr 3791   -1-1-onto->wf1o 4928   1oc1o 6024    ~~ cen 6249
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-id 4057  df-suc 4135  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-1o 6031  df-en 6252
This theorem is referenced by:  ensn1g  6307  en1  6309
  Copyright terms: Public domain W3C validator