ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  epel Unicode version

Theorem epel 4057
Description: The epsilon relation and the membership relation are the same. (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
epel  |-  ( x  _E  y  <->  x  e.  y )

Proof of Theorem epel
StepHypRef Expression
1 vex 2577 . 2  |-  y  e. 
_V
21epelc 4056 1  |-  ( x  _E  y  <->  x  e.  y )
Colors of variables: wff set class
Syntax hints:    <-> wb 102   class class class wbr 3792    _E cep 4052
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-opab 3847  df-eprel 4054
This theorem is referenced by:  epse  4107  wetrep  4125  ordsoexmid  4314  zfregfr  4326  ordwe  4328  wessep  4330  reg3exmidlemwe  4331  smoiso  5948  nnwetri  6385  ordiso2  6415  frec2uzisod  9357
  Copyright terms: Public domain W3C validator