ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  epelc Unicode version

Theorem epelc 4074
Description: The epsilon relationship and the membership relation are the same. (Contributed by Scott Fenton, 11-Apr-2012.)
Hypothesis
Ref Expression
epelc.1  |-  B  e. 
_V
Assertion
Ref Expression
epelc  |-  ( A  _E  B  <->  A  e.  B )

Proof of Theorem epelc
StepHypRef Expression
1 epelc.1 . 2  |-  B  e. 
_V
2 epelg 4073 . 2  |-  ( B  e.  _V  ->  ( A  _E  B  <->  A  e.  B ) )
31, 2ax-mp 7 1  |-  ( A  _E  B  <->  A  e.  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 103    e. wcel 1434   _Vcvv 2610   class class class wbr 3805    _E cep 4070
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2612  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-br 3806  df-opab 3860  df-eprel 4072
This theorem is referenced by:  epel  4075  epini  4746  ecid  6256  ordiso2  6540
  Copyright terms: Public domain W3C validator