![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqeltrri | Unicode version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeltrr.1 |
![]() ![]() ![]() ![]() |
eqeltrr.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqeltrri |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrr.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | eqcomi 2086 |
. 2
![]() ![]() ![]() ![]() |
3 | eqeltrr.2 |
. 2
![]() ![]() ![]() ![]() | |
4 | 2, 3 | eqeltri 2152 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-4 1441 ax-17 1460 ax-ial 1468 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-cleq 2075 df-clel 2078 |
This theorem is referenced by: 3eltr3i 2160 p0ex 3967 epse 4105 unex 4202 ordtri2orexmid 4274 onsucsssucexmid 4278 ordsoexmid 4313 ordtri2or2exmid 4322 nnregexmid 4368 abrexex 5775 opabex3 5780 abrexex2 5782 abexssex 5783 abexex 5784 oprabrexex2 5788 tfr0dm 5971 1lt2pi 6592 prarloclemarch2 6671 prarloclemlt 6745 0cn 7173 resubcli 7438 0reALT 7472 10nn 8573 numsucc 8597 nummac 8602 qreccl 8808 unirnioo 9072 bj-unex 10868 |
Copyright terms: Public domain | W3C validator |