![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqeq2i | Unicode version |
Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeq2i.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqeq2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | eqeq2 2091 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-4 1441 ax-17 1460 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-cleq 2075 |
This theorem is referenced by: eqtri 2102 rabid2 2531 dfss2 2989 equncom 3118 preq12b 3564 preqsn 3569 opeqpr 4010 orddif 4292 dfrel4v 4796 dfiota2 4892 funopg 4958 fnressn 5375 fressnfv 5376 acexmidlemph 5530 fnovim 5634 tpossym 5919 qsid 6230 unfiexmid 6428 recidpirq 7077 axprecex 7097 negeq0 7418 muleqadd 7814 sizeeq0 9807 cjne0 9922 sqrt00 10053 sqrtmsq2i 10148 |
Copyright terms: Public domain | W3C validator |