ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnfvd Unicode version

Theorem eqfnfvd 5294
Description: Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
eqfnfvd.1  |-  ( ph  ->  F  Fn  A )
eqfnfvd.2  |-  ( ph  ->  G  Fn  A )
eqfnfvd.3  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  ( G `  x ) )
Assertion
Ref Expression
eqfnfvd  |-  ( ph  ->  F  =  G )
Distinct variable groups:    x, A    x, F    x, G    ph, x

Proof of Theorem eqfnfvd
StepHypRef Expression
1 eqfnfvd.3 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  ( G `  x ) )
21ralrimiva 2435 . 2  |-  ( ph  ->  A. x  e.  A  ( F `  x )  =  ( G `  x ) )
3 eqfnfvd.1 . . 3  |-  ( ph  ->  F  Fn  A )
4 eqfnfvd.2 . . 3  |-  ( ph  ->  G  Fn  A )
5 eqfnfv 5291 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
63, 4, 5syl2anc 403 . 2  |-  ( ph  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
72, 6mpbird 165 1  |-  ( ph  ->  F  =  G )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434   A.wral 2349    Fn wfn 4921   ` cfv 4926
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-pow 3950  ax-pr 3966
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-sbc 2817  df-csb 2910  df-un 2978  df-in 2980  df-ss 2987  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-br 3788  df-opab 3842  df-mpt 3843  df-id 4050  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-iota 4891  df-fun 4928  df-fn 4929  df-fv 4934
This theorem is referenced by:  foeqcnvco  5455  f1eqcocnv  5456  tfrlem1  5951  frecrdg  6051  iseqvalt  9521  iseqoveq  9529  iseqss  9530  iseqsst  9531  iseqfeq2  9534  iseqfeq  9536
  Copyright terms: Public domain W3C validator