![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqimss | Unicode version |
Description: Equality implies the subclass relation. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
eqimss |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss 3015 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simplbi 268 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-11 1438 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-in 2980 df-ss 2987 |
This theorem is referenced by: eqimss2 3053 uneqin 3222 sssnr 3553 sssnm 3554 ssprr 3556 sstpr 3557 snsspw 3564 elpwuni 3770 disjeq2 3778 disjeq1 3781 pwne 3942 pwssunim 4047 poeq2 4063 seeq1 4102 seeq2 4103 trsucss 4186 onsucelsucr 4260 xp11m 4789 funeq 4951 fnresdm 5039 fssxp 5089 ffdm 5092 fcoi1 5101 fof 5137 dff1o2 5162 fvmptss2 5279 fvmptssdm 5287 fprg 5378 dff1o6 5447 tposeq 5896 nntri1 6140 nntri2or2 6142 nnsseleq 6145 frec2uzf1od 9488 sizeinfuni 9801 |
Copyright terms: Public domain | W3C validator |