![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqimss2 | Unicode version |
Description: Equality implies the subclass relation. (Contributed by NM, 23-Nov-2003.) |
Ref | Expression |
---|---|
eqimss2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 3052 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | eqcoms 2085 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-11 1438 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-in 2980 df-ss 2987 |
This theorem is referenced by: disjeq2 3778 disjeq1 3781 poeq2 4063 seeq1 4102 seeq2 4103 dmcoeq 4632 xp11m 4789 funeq 4951 fconst3m 5412 tposeq 5896 |
Copyright terms: Public domain | W3C validator |