![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqrd | Unicode version |
Description: Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 21-Mar-2017.) |
Ref | Expression |
---|---|
eqrd.0 |
![]() ![]() ![]() ![]() |
eqrd.1 |
![]() ![]() ![]() ![]() |
eqrd.2 |
![]() ![]() ![]() ![]() |
eqrd.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqrd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqrd.0 |
. . 3
![]() ![]() ![]() ![]() | |
2 | eqrd.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | eqrd.2 |
. . 3
![]() ![]() ![]() ![]() | |
4 | eqrd.3 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | biimpd 142 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 2, 3, 5 | ssrd 3005 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 4 | biimprd 156 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 1, 3, 2, 7 | ssrd 3005 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 6, 8 | eqssd 3017 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-in 2980 df-ss 2987 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |