ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqrelriiv Unicode version

Theorem eqrelriiv 4454
Description: Inference from extensionality principle for relations. (Contributed by NM, 17-Mar-1995.)
Hypotheses
Ref Expression
eqreliiv.1  |-  Rel  A
eqreliiv.2  |-  Rel  B
eqreliiv.3  |-  ( <.
x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  B )
Assertion
Ref Expression
eqrelriiv  |-  A  =  B
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem eqrelriiv
StepHypRef Expression
1 eqreliiv.1 . 2  |-  Rel  A
2 eqreliiv.2 . 2  |-  Rel  B
3 eqreliiv.3 . . 3  |-  ( <.
x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  B )
43eqrelriv 4453 . 2  |-  ( ( Rel  A  /\  Rel  B )  ->  A  =  B )
51, 2, 4mp2an 417 1  |-  A  =  B
Colors of variables: wff set class
Syntax hints:    <-> wb 103    = wceq 1285    e. wcel 1434   <.cop 3403   Rel wrel 4370
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-pow 3950  ax-pr 3966
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-opab 3842  df-xp 4371  df-rel 4372
This theorem is referenced by:  eqbrriv  4455  inopab  4490  difopab  4491  dfres2  4682  cnvopab  4750  cnv0  4751  cnvdif  4754  cnvcnvsn  4821  dfco2  4844  coiun  4854  co02  4858  coass  4863  ressn  4882
  Copyright terms: Public domain W3C validator