ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqreznegel Unicode version

Theorem eqreznegel 9406
Description: Two ways to express the image under negation of a set of integers. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
eqreznegel  |-  ( A 
C_  ZZ  ->  { z  e.  RR  |  -u z  e.  A }  =  { z  e.  ZZ  |  -u z  e.  A } )
Distinct variable group:    z, A

Proof of Theorem eqreznegel
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ssel 3091 . . . . . . . 8  |-  ( A 
C_  ZZ  ->  ( -u w  e.  A  ->  -u w  e.  ZZ )
)
2 recn 7753 . . . . . . . . 9  |-  ( w  e.  RR  ->  w  e.  CC )
3 negid 8009 . . . . . . . . . . . 12  |-  ( w  e.  CC  ->  (
w  +  -u w
)  =  0 )
4 0z 9065 . . . . . . . . . . . 12  |-  0  e.  ZZ
53, 4eqeltrdi 2230 . . . . . . . . . . 11  |-  ( w  e.  CC  ->  (
w  +  -u w
)  e.  ZZ )
65pm4.71i 388 . . . . . . . . . 10  |-  ( w  e.  CC  <->  ( w  e.  CC  /\  ( w  +  -u w )  e.  ZZ ) )
7 zrevaddcl 9104 . . . . . . . . . 10  |-  ( -u w  e.  ZZ  ->  ( ( w  e.  CC  /\  ( w  +  -u w )  e.  ZZ ) 
<->  w  e.  ZZ ) )
86, 7syl5bb 191 . . . . . . . . 9  |-  ( -u w  e.  ZZ  ->  ( w  e.  CC  <->  w  e.  ZZ ) )
92, 8syl5ib 153 . . . . . . . 8  |-  ( -u w  e.  ZZ  ->  ( w  e.  RR  ->  w  e.  ZZ ) )
101, 9syl6 33 . . . . . . 7  |-  ( A 
C_  ZZ  ->  ( -u w  e.  A  ->  ( w  e.  RR  ->  w  e.  ZZ ) ) )
1110com23 78 . . . . . 6  |-  ( A 
C_  ZZ  ->  ( w  e.  RR  ->  ( -u w  e.  A  ->  w  e.  ZZ )
) )
1211impd 252 . . . . 5  |-  ( A 
C_  ZZ  ->  ( ( w  e.  RR  /\  -u w  e.  A )  ->  w  e.  ZZ ) )
13 simpr 109 . . . . . 6  |-  ( ( w  e.  RR  /\  -u w  e.  A )  ->  -u w  e.  A
)
1413a1i 9 . . . . 5  |-  ( A 
C_  ZZ  ->  ( ( w  e.  RR  /\  -u w  e.  A )  ->  -u w  e.  A
) )
1512, 14jcad 305 . . . 4  |-  ( A 
C_  ZZ  ->  ( ( w  e.  RR  /\  -u w  e.  A )  ->  ( w  e.  ZZ  /\  -u w  e.  A ) ) )
16 zre 9058 . . . . 5  |-  ( w  e.  ZZ  ->  w  e.  RR )
1716anim1i 338 . . . 4  |-  ( ( w  e.  ZZ  /\  -u w  e.  A )  ->  ( w  e.  RR  /\  -u w  e.  A ) )
1815, 17impbid1 141 . . 3  |-  ( A 
C_  ZZ  ->  ( ( w  e.  RR  /\  -u w  e.  A )  <-> 
( w  e.  ZZ  /\  -u w  e.  A
) ) )
19 negeq 7955 . . . . 5  |-  ( z  =  w  ->  -u z  =  -u w )
2019eleq1d 2208 . . . 4  |-  ( z  =  w  ->  ( -u z  e.  A  <->  -u w  e.  A ) )
2120elrab 2840 . . 3  |-  ( w  e.  { z  e.  RR  |  -u z  e.  A }  <->  ( w  e.  RR  /\  -u w  e.  A ) )
2220elrab 2840 . . 3  |-  ( w  e.  { z  e.  ZZ  |  -u z  e.  A }  <->  ( w  e.  ZZ  /\  -u w  e.  A ) )
2318, 21, 223bitr4g 222 . 2  |-  ( A 
C_  ZZ  ->  ( w  e.  { z  e.  RR  |  -u z  e.  A }  <->  w  e.  { z  e.  ZZ  |  -u z  e.  A }
) )
2423eqrdv 2137 1  |-  ( A 
C_  ZZ  ->  { z  e.  RR  |  -u z  e.  A }  =  { z  e.  ZZ  |  -u z  e.  A } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   {crab 2420    C_ wss 3071  (class class class)co 5774   CCcc 7618   RRcr 7619   0cc0 7620    + caddc 7623   -ucneg 7934   ZZcz 9054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator