Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsbc3r Unicode version

Theorem eqsbc3r 2846
 Description: eqsbc3 2825 with setvar variable on right side of equals sign. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 7-Jul-2021.)
Assertion
Ref Expression
eqsbc3r
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem eqsbc3r
StepHypRef Expression
1 eqsbc3 2825 . 2
2 eqcom 2058 . . 3
32sbcbii 2845 . 2
4 eqcom 2058 . 2
51, 3, 43bitr4g 216 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 102   wceq 1259   wcel 1409  wsbc 2787 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-sbc 2788 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator